Proton exchange membrane fuel cells (PEMFCs) have the advantages of long operation cycles, high energy efficiency, and no pollution of reaction products. Temperature is an important factor to ensure the operation of fuel cell systems. Too high temperature will cause irreversible damage to the proton exchange membrane, and too low temperature will greatly reduce the power generation efficiency of fuel cells. Therefore, the effective thermal management temperature control can ensure the stable operation of the system under steady state and dynamic variable load. It can also improve the reaction efficiency of the fuel cell system and prolong the life of the fuel cell. This paper mainly summarized the cooling mode and control strategy of PEMFCs based on thermal management system. The application of different cooling methods is further discussed. The characteristics of traditional proportional-integral-derivative (PID) control, fuzzy PID control, predictive control, adaptive control, and other common thermal management control strategies were described in detail. The research status of scholars in various countries were analyzed, respectively, and the cooling effects of different strategies are compared. Through the review and research on the temperature control of PEMFCs, it is found that the stable operation of the stack is inseparable from the coordination of reasonable cooling mode and control strategy.

1.
Y. L.
Zhukovskiy
,
D. E.
Batueva
,
A. D.
Buldysko
 et al, “
Fossil energy in the framework of sustainable development: Analysis of prospects and development of forecast scenarios
,”
Energies
14
(
17
),
5268
(
2021
).
2.
Y.
Xian
,
M.
Xia
,
S.
Su
 et al, “
Research on the market diffusion of fuel cell vehicles in China based on the generalized bass model
,”
IEEE Trans. Ind. Appl.
58
(
2
),
2950
2960
(
2021
).
3.
C. Y.
Ling
,
H.
Cao
,
Y.
Chen
 et al, “
Compact open cathode feed system for PEMFCs
,”
Appl. Energy
164
,
670
675
(
2016
).
4.
D.
Herranz
and
P.
Ocón
,
Benzimidazole as Solid Electrolyte Material for Fuel Cells//Chemistry and Applications of Benzimidazole and Its Derivatives
(
IntechOpen
,
2019
).
5.
Q.
Chen
,
G.
Zhang
,
X.
Zhang
 et al, “
Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability
,”
Appl. Energy
286
,
116496
(
2021
).
6.
D.
Wu
,
C.
Peng
,
C.
Yin
 et al, “
Review of system integration and control of proton exchange membrane fuel cells
,”
Electrochem. Energy Rev.
3
(
3
),
466
505
(
2020
).
7.
X.
Shusheng
,
S.
Qiujie
,
G.
Baosheng
 et al, “
Research and development of on-board hydrogen-producing fuel cell vehicles
,”
Int. J. Hydrogen Energy
45
(
35
),
17844
17857
(
2020
).
8.
X.
Zhang
,
F.
Li
,
J.
Xing Ren
 et al, “
Progress in the application of hydrogen fuel cells
,”
E3S Web Conf.
118
,
01058
(
2019
).
9.
X.
Chen
,
Y.
Fang
,
Q.
Liu
 et al, “
Temperature and voltage dynamic control of PEMFC Stack using MPC method
,”
Energy Rep.
8
,
798
808
(
2022
).
10.
Q.
Ge
and
C.
Wei
, “
Optimization of fuel cell thermal management system based on back propagation neural network
,”
Therm. Sci.
25
(
4
),
2975
2982
(
2021
).
11.
J.
Song
,
Y.
Huang
,
J.
Zeng
 et al, “
Design and numerical investigation of multi-channel cooling plate for proton exchange membrane fuel cell
,”
Energy Rep.
8
,
6058
6067
(
2022
).
12.
M. H. S.
Bargal
,
M. A. A.
Abdelkareem
,
Q.
Tao
 et al, “
Liquid cooling techniques in proton exchange membrane fuel cell stacks: A detailed survey
,”
Alexandria Eng. J.
59
(
2
),
635
655
(
2020
).
13.
S. A.
Atyabi
,
E.
Afshari
, and
C.
Udemu
, “
Comparison of active and passive cooling of proton exchange membrane fuel cell using a multiphase model
,”
Energy Convers. Manage.
268
,
115970
(
2022
).
14.
B.
Zhang
,
F.
Lin
,
C.
Zhang
 et al, “
Design and implementation of model predictive control for an open-cathode fuel cell thermal management system
,”
Renewable Energy
154
,
1014
1024
(
2020
).
15.
Q.
Li
,
Z.
Liu
,
Y.
Sun
 et al, “
A review on temperature control of proton exchange membrane fuel cells
,”
Processes
9
(
2
),
235
(
2021
).
16.
T. J.
Bvumbe
,
P.
Bujlo
,
I.
Tolj
 et al, “
Review on management, mechanisms and modelling of thermal processes in PEMFC
,”
Hydrogen Fuel Cells
1
(
1
),
1
20
(
2016
).
17.
F.
Xiao
,
Y. C.
Wang
,
Z. P.
Wu
 et al, “
Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells
,”
Adv. Mater.
33
(
50
),
2006292
(
2021
).
18.
J.
Fan
,
M.
Chen
,
Z.
Zhao
 et al, “
Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells
,”
Nat. Energy
6
(
5
),
475
486
(
2021
).
19.
K.
Jiao
,
J.
Xuan
,
Q.
Du
 et al, “
Designing the next generation of proton-exchange membrane fuel cells
,”
Nature
595
(
7867
),
361
369
(
2021
).
20.
W.
Chen
,
Y.
Li
, and
X.
Zhao
, “
Temperature control strategy for water-cooled proton exchange membrane fuel cells
,”
J. Southwest Jiaotong Univ.
50
(
3
),
393
399
(
2015
).
21.
M.
Ramezanizadeh
,
M. A.
Nazari
,
M. H.
Ahmadi
 et al, “
A review on the approaches applied for cooling fuel cells
,”
Int. J. Heat Mass Transfer
139
,
517
525
(
2019
).
22.
J.
Lee
,
M. H.
Gundu
,
N.
Lee
 et al, “
Innovative cathode flow-field design for passive air-cooled polymer electrolyte membrane (PEM) fuel cell stacks
,”
Int. J. Hydrogen Energy
45
(
20
),
11704
11713
(
2020
).
23.
W. W.
Yuan
,
K.
Ou
, and
Y. B.
Kim
, “
Thermal management for an air coolant system of a proton exchange membrane fuel cell using heat distribution optimization
,”
Appl. Therm. Eng.
167
,
114715
(
2020
).
24.
M.
Saeedan
,
E.
Afshari
, and
M.
Ziaei-Rad
, “
Modeling and optimization of turbulent flow through PEM fuel cell cooling channels filled with metal foam—A comparison of water and air cooling systems
,”
Energy Convers. Manage.
258
,
115486
(
2022
).
25.
C.
Gong
,
J.
Shen
,
Y.
Yu
 et al, “
A novel radiator structure for enhanced heat transfer used in PEM fuel cell vehicle
,”
Int. J. Heat Mass Transfer
157
,
119926
(
2020
).
26.
Q.
Meyer
,
K.
Ronaszegi
,
J. B.
Robinson
 et al, “
Combined current and temperature mapping in an air-cooled, open-cathode polymer electrolyte fuel cell under steady-state and dynamic conditions
,”
J. Power Sources
297
,
315
322
(
2015
).
27.
R.
Jingjie
,
C.
Yi
, and
X.
Wu
, “
Design and performance of air-cooled fuel cells
,”
Metrol. Meas. Tech.
(Chinese)
45
(
9
),
20
23
(
2018
).
28.
A.
De las Heras
,
F. J.
Vivas
,
F.
Segura
 et al, “
Air-cooled fuel cells: Keys to design and build the oxidant/cooling system
,”
Renewable Energy
125
,
1
20
(
2018
).
29.
E. J.
Choi
,
S. H.
Hwang
,
J.
Park
 et al, “
Parametric analysis of simultaneous humidification and cooling for PEMFCs using direct water injection method
,”
Int. J. Hydrogen Energy
42
(
17
),
12531
12542
(
2017
).
30.
I.
Zahan
,
R.
Nasrin
, and
S.
Khatun
, “
Thermal performance of ternary-hybrid nanofluids through a convergent-divergent nozzle using distilled water-ethylene glycol mixtures
,”
Int. Commun. Heat Mass Transfer
137
,
106254
(
2022
).
31.
S.
Li
and
B.
Sundén
, “
Numerical study on thermal performance of non-uniform flow channel designs for cooling plates of PEM fuel cells
,”
Numer. Heat Transfer, Part A
74
(
1
),
917
930
(
2018
).
32.
J.
Song
,
Y.
Huang
,
Y.
Liu
 et al, “
Numerical investigation and optimization of cooling flow field design for proton exchange membrane fuel cell
,”
Energies
15
(
7
),
2609
(
2022
).
33.
M. S.
Idris
,
I. A.
Zakaria
,
W. A. W.
Hamzah
 et al, “
The characteristics of hybrid Al2O3: SiO2 nanofluids in cooling plate of PEMFC
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
88
(
3
),
96
109
(
2021
).
34.
X.
Chen
,
Q.
Liu
,
Y.
Fang
 et al, “
Performance study of a mimo-shaped cooling plate in PEMFC Stack for heat transfer enhancement
,”
SSRN Electric J.
(published online
2021
).
35.
I. A.
Zakaria
,
W.
Mohamed
,
M. B.
Zailan
 et al, “
Experimental analysis of SiO2-Distilled water nanofluids in a Polymer Electrolyte Membrane fuel cell parallel channel cooling plate
,”
Int. J. Hydrogen Energy
44
(
47
),
25850
25862
(
2019
).
36.
S. A.
Atyabi
,
E.
Afshari
,
E.
Zohravi
 et al, “
Three-dimensional simulation of different flow fields of proton exchange membrane fuel cell using a multi-phase coupled model with cooling channel
,”
Energy
234
,
37929
37944
(
2021
).
37.
E.
Alizadeh
,
S. M.
Rahgoshay
,
M.
Rahimi-Esbo
 et al, “
A novel cooling flow field design for polymer electrolyte membrane fuel cell stack
,”
Int. J. Hydrogen Energy
41
(
20
),
8525
8532
(
2016
).
38.
B. H.
Lim
,
E. H.
Majlan
,
W.
Daud
 et al, “
Numerical analysis of modified parallel flow field designs for fuel cells
,”
Int. J. Hydrogen Energy
42
(
14
),
9210
9218
(
2016
).
39.
W.
Li
,
Q.
Zhang
,
C.
Wang
 et al, “
Experimental and numerical analysis of a three-dimensional flow field for PEMFCs
,”
Appl. Energy
195
,
278
288
(
2017
).
40.
E.
Afshari
,
M.
Ziaei-Rad
, and
M. M.
Dehkordi
, “
Numerical investigation on a novel zigzag-shaped flow channel design for cooling plates of PEM fuel cells
,”
J. Energy Inst.
90
(
5
),
752
763
(
2017
).
41.
D.
Yikai
 et al, “
Research on the stack structure of double membrane electrode by single cooling channel
,”
J. Wuhan Univ. Technol.
42
(
006
),
986
991
(
2018
) (in Chinese).
42.
K.
Han
,
T.
Jinchun
,
Z.
Jian
 et al, “
Structural optimization of cooling channels for 2kW fuel cells
,”
J. Hefei Univ. Technol.
43
(
08
),
1040
1044
(
2020
) (in Chinese).
43.
G.
Yuan
,
Z.
Rui
,
L.
Junkai
, and
Z.
Tong
, “
Thermal simulation of proton exchange membrane fuel cells with different cooling flow channel
,”
J. Tongji Univ.
47
,
79
83
(
2019
) (in Chinese).
44.
Y.
Hama
,
D.
Nagata
,
S.
Goto
 et al, “
Downsizing technology for FC cooling system installation under front hood
,” in
Honda R&D Technical Review F1 Special (The Third Era Activities)
(Honda
R&D
,
2019
), pp.
63
70
.
45.
D.
Xu
,
X.
Sheng
, and
Z.
Zhao
, “
Research progress and influence factors of vehicle fuel cell cold start
,”
Automot. Dig.
4
,
28
34
(
2019
) (in Chinese).
46.
A.
Fly
and
R. H.
Thring
, “
A comparison of evaporative and liquid cooling methods for fuel cell vehicles
,”
Int. J. Hydrogen Energy
41
(
32
),
14217
14229
(
2016
).
47.
E. J.
Choi
,
J. Y.
Park
, and
M. S.
Kim
, “
Two-phase cooling using HFE-7100 for polymer electrolyte membrane fuel cell application
,”
Appl. Therm. Eng.
148
,
868
877
(
2019
).
48.
L.
Wang
,
Z.
Quan
,
Y.
Zhao
 et al, “
Experimental investigation on thermal management of proton exchange membrane fuel cell stack using micro heat pipe array
,”
Appl. Therm. Eng.
214
,
118831
(
2022
).
49.
I.
Tolj
,
Ž.
Penga
,
D.
Vukičević
, and
F.
Barbir
, “
Thermal management of edge-cooled 1 kW portable proton exchange membrane fuel cell stack
,”
Appl. Energy
257
,
114038
(
2020
).
50.
E. J.
Choi
,
J. Y.
Park
, and
M. S.
Kim
, “
A comparison of temperature distribution in PEMFC with single-phase water cooling and two-phase HFE-7100 cooling methods by numerical study
,”
Int. J. Hydrogen Energy
43
(
29
),
13406
13419
(
2018
).
51.
C.
Mahjoubi
,
J. C.
Olivier
,
S.
Skander-Mustapha
 et al, “
An improved thermal control of open cathode proton exchange membrane fuel cell
,”
Int. J. Hydrogen Energy
44
(
22
),
11332
11345
(
2019
).
52.
J. M.
Desantes
,
R.
Novella
,
B.
Pla
 et al, “
A modeling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications
,”
Appl. Energy
317
,
119137
(
2022
).
53.
P.
Dong
,
G.
Xie
, and
M.
Ni
, “
The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell
,”
Energy
206
,
117977
(
2020
).
54.
Y.
Huang
,
X.
Xiao
,
H.
Kang
 et al, “
Thermal management of polymer electrolyte membrane fuel cells: A critical review of heat transfer mechanisms, cooling approaches, and advanced cooling techniques analysis
,”
Energy Convers. Manage.
254
,
115221
(
2022
).
55.
J.
Xu
,
C.
Zhang
,
R.
Fan
 et al, “
Modelling and control of vehicle integrated thermal management system of PEM fuel cell vehicle
,”
Energy
199
,
117495
(
2020
).
56.
K.
Ou
,
W. W.
Yuan
,
M.
Choi
 et al, “
Performance increase for an open-cathode PEM fuel cell with humidity and temperature control
,”
Int. J. Hydrogen Energy
45
,
29852
29862
(
2017
).
57.
Y.
Jia
,
R.
Zhang
,
X.
Lv
 et al, “
Research on temperature control of fuel-cell cooling system based on variable domain fuzzy PID
,”
Processes
10
(
3
),
534
(
2022
).
58.
Y. C.
Xie
,
J. X.
Zou
, and
C.
Peng
, “
Temperature control of PEMFC system based on Variable universe fuzzy incremental theory
,”
Control Theory Appl.
36
,
428
435
(
2019
) (in Chinese).
59.
Z.
Peichang
and
Y.
Datai
, “
Model predictive control of PEMFC temperature model
,”
J. Syst. Simul.
21
(
5
),
1305
1309
(
2009
) (in Chinese).
60.
L.
Yin
,
Q.
Li
,
Y.
Han
 et al, “
Real-time optimal temperature adaptive inverse control of air-cooled PEMFC power generation system
,”
Acta Energiae Solaris Sin.
38
(
08
),
2168
2175
(
2017
).
61.
J.
Han
,
J.
Han
,
H.
Ji
 et al, “
‘Model-based’ design of thermal management system of a fuel cell ‘air-independent’ propulsion system for underwater shipboard
,”
Int. J. Hydrogen Energy
45
(
56
),
32449
32463
(
2020
).
62.
K.
Sankar
and
A. K.
Jana
, “
Nonlinear multivariable sliding mode control of a reversible PEM fuel cell integrated system
,”
Energy Convers. Manage.
171
,
541
565
(
2018
).
63.
C.
Yan
,
J.
Chen
,
H.
Liu
 et al, “
Model-based fault tolerant control for the thermal management of PEMFC systems
,”
IEEE Trans. Ind. Electron.
67
(
4
),
2875
2884
(
2019
).
You do not currently have access to this content.