Anaerobic digestion (AD), one of the most promising routes for producing clean energy from biodegradable wastes, encounters difficulties at operational and mechanistic levels impacting its overall efficiency. Along with other solutions to overcome this problem, biochar has arrived as a worthwhile additive to enhance the performance of the process. This review aims to discuss various perspectives of biochar addition to an anaerobic digester. It summarizes the mechanism of biochar action during AD. A direct inter-species electron transfer offers a synergistic mechanism specifying different aspects of biogas production. The importance of characteristics of biochar (ion-exchange capacity, surface properties, electrical conductivity, and hydrophobicity) has been explained in enhancing AD performance. Studies indicate that a surface area >150 m2/g and a particle size <1 cm can be referred to as benchmark along with its supporting properties apt for AD. Researchers have recommended varying amounts of biochar (up to 15 g/l) for optimizing biogas production. The applicability of biochar for upgrading the biogas with respect to significant impurities (CO2, H2S, and NH3) has been discussed in detail. Along with the beneficial effects of biochar, its limitations in AD have also been identified, which need to be addressed wisely in order to optimize the process and make an unbiased shift toward validating the candidature of biochar in AD. The whole discussion indicates that consciously planned scheme utilizing biochar may be helpful in enhancing the effectiveness of AD for biogas generation, which may prove to be an impactful technology in the world of renewable energy.

1.
H.
Dhar
,
S.
Kumar
, and
R.
Kumar
, “
A review on organic waste to energy systems in India
,”
Bioresour. Technol.
245
,
1229
1237
(
2017
).
2.
S.
Sahota
,
G.
Shah
,
P.
Ghosh
,
R.
Kapoor
,
S.
Sengupta
,
P.
Singh
,
V.
Vijay
,
A.
Sahay
,
V. K.
Vijay
, and
I. S.
Thakur
, “
Review of trends in biogas upgradation technologies and future perspectives
,”
Bioresour. Technol. Rep.
1
,
79
88
(
2018
).
3.
P.
Weiland
, “
Biogas production: Current state and perspectives
,”
Appl. Microbiol. Biotechnol.
85
,
849
860
(
2010
).
4.
A.
Rinzema
,
M.
Boone
,
G.
Lettinga
, and
K.
Knippenberg
, “
Bactericidal effect of long chain fatty acids in anaerobic digestion
,”
Water Environ. Res.
66
(
1
),
40
49
(
1994
).
5.
K.
Sasaki
,
M.
Morita
,
S.-I.
Hirano
,
N.
Ohmura
, and
Y.
Igarashi
, “
Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles
,”
Appl. Microbiol. Biotechnol.
90
(
4
),
1555
1561
(
2011
).
6.
C. J.
Banks
,
Y.
Zhang
,
Y.
Jiang
, and
S.
Heaven
, “
Trace element requirements for stable food waste digestion at elevated ammonia concentrations
,”
Bioresour. Technol.
104
,
127
135
(
2012
).
7.
C.
Resch
,
A.
Wörl
,
R.
Waltenberger
,
R.
Braun
, and
R.
Kirchmayr
, “
Enhancement options for the utilisation of nitrogen-rich animal by-products in anaerobic digestion
,”
Bioresour. Technol.
102
(
3
),
2503
2510
(
2011
).
8.
K.
Jankowska
,
K.
Olanczuk-Neyman
, and
E.
Kulbat
, “
The sensitivity of bacteria to heavy metals in the presence of mineral ship motor oil in coastal marine sediments and waters
,”
Pol. J. Environ. Stud.
15
(
6
),
935
941
(
2006
).
9.
Y.
Chen
,
J. J.
Cheng
, and
K. S.
Creamer
, “
Inhibition of anaerobic digestion process: A review
,”
Bioresour. Technol.
99
(
10
),
4044
4064
(
2008
).
10.
N.
Cabirol
,
E. J.
Barragán
,
A.
Durán
, and
A.
Noyola
, “
Effect of aluminum and sulphate on anaerobic digestion of sludge from wastewater enhanced primary treatment
,”
Water Sci. Technol.
48
(
6
),
235
240
(
2003
).
11.
J. A.
Alvarez
,
L.
Otero
,
J. M.
Lema
, and
F.
Omil
, “
The effect and fate of antibiotics during the anaerobic digestion of pig manure
,”
Bioresour. Technol.
101
(
22
),
8581
8586
(
2010
).
12.
Q.-S.
Liu
,
T.
Zheng
,
P.
Wang
,
J.-P.
Jiang
, and
N.
Li
, “
Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers
,”
Chem. Eng. J.
157
(
2
),
348
356
(
2010
).
13.
H.
Yao
,
J.
Lu
,
J.
Wu
,
Z.
Lu
,
P. C.
Wilson
, and
Y.
Shen
, “
Adsorption of fluoroquinolone antibiotics by wastewater sludge biochar: The role of the sludge source
,”
Water Air Soil Pollut.
224
(
1
),
1370
(
2013
).
14.
Z.
Song
,
C. J.
Williams
, and
R. G. J.
Edyvean
, “
Coagulation and anaerobic digestion of tannery wastewater
,”
Process Saf. Environ. Prot.
79
(
1
),
23
28
(
2001
).
15.
J. L.
Chen
,
R.
Ortiz
,
T. W. J.
Steele
, and
D. C.
Stuckey
, “
Toxicants inhibiting anaerobic digestion: A review
,”
Biotechnol. Adv.
32
(
8
),
1523
1534
(
2014
).
16.
N. M. S.
Sunyoto
,
M.
Zhu
,
Z.
Zhang
, and
D.
Zhang
, “
Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste
,”
Bioresour. Technol.
219
,
29
36
(
2016
).
17.
N. M. S.
Sunyoto
,
M.
Zhu
,
Z.
Zhang
, and
D.
Zhang
, “
Effect of biochar addition and initial pH on hydrogen production from the first phase of two-phase anaerobic digestion of carbohydrates food waste
,”
Energy Proc.
105
,
379
384
(
2017
).
18.
K.
Paritosh
,
S. K.
Kushwaha
,
M.
Yadav
,
N.
Pareek
,
A.
Chawade
, and
V.
Vivekanand
, “
Food waste to energy: An overview of sustainable approaches for food waste management and nutrient recycling
,”
Biomed. Res. Int.
2017
,
1
20
.
19.
T. G.
Ambaye
,
E.
Rene
,
C.
Dupont
,
S.
Wongrod
, and
E.
van Hullebusch
, “
Anaerobic digestion of fruit waste mixed with sewage sludge digestate biochar: Influence on biomethane production
,”
Front. Energy Res.
8
,
1
14
(
2020
).
20.
Y.
Shen
,
J. L.
Linville
,
P. A. A.
Ignacio-de Leon
,
R. P.
Schoene
, and
M.
Urgun-Demirtas
, “
Towards a sustainable paradigm of the waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar
,”
J. Cleaner Prod.
135
,
1054
1064
(
2016
).
21.
F.
Raposo
,
V.
Fernández-Cegrí
,
M. A.
De la Rubia
,
R.
Borja
,
F.
Béline
,
C.
Cavinato
,
G.
Demirer
,
B.
Fernández
,
M.
Fernández-Polanco
,
J. C.
Frigon
,
R.
Ganesh
,
P.
Kaparaju
,
J.
Koubova
,
R.
Méndez
,
G.
Menin
,
A.
Peene
,
P.
Scherer
,
M.
Torrijos
,
H.
Uellendahl
,
I.
Wierinck
, and
V.
de Wilde
, “
Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study
,”
J. Chem. Technol. Biotechnol.
86
,
1088
1098
(
2011
).
22.
M.
Inyang
,
B.
Gao
,
P.
Pullammanappallil
,
W.
Ding
, and
A. R.
Zimmerman
, “
Biochar from anaerobically digested sugarcane bagasse
,”
Bioresour. Technol.
101
,
8868
8872
(
2010
).
23.
A.
Grosser
,
E.
Neczaj
,
B. R.
Singh
,
R.
Almas
,
H.
Brattebo
, and
M.
Kacprzak
, “
Anaerobic digestion of sewage sludge with grease trap sludge and municipal solid waste as co‐substrates
,”
Environ. Res.
155
,
249
260
(
2017
).
24.
Y.
Sun
,
D.
Wang
,
J.
Yan
,
W.
Qiao
,
W.
Wang
, and
T.
Zhu
, “
Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes
,”
Waste Manage.
34
,
1025
1034
(
2014
).
25.
H.
Yuan
and
N.
Zhu
, “
Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion
,”
Renewable Sustainable Energy Rev.
58
,
429
438
(
2016
).
26.
I.
Angelidaki
,
L.
Treu
,
P.
Tsapekos
,
G.
Luo
,
S.
Campanaro
,
H.
Wenzel
, and
P. G.
Kougias
, “
Biogas upgrading and utilization: Current status and perspectives
,”
Biotechnol. Adv.
36
,
452
466
(
2018
).
27.
S.
Singhal
,
R.
Sharma
,
S.
Agarwal
,
S.
Arora
, and
N.
Singhal
, “
Exploration of defatted waste feed stock for continuous production of biomethane under psychrophilic outdoor conditions
,”
Environ. Prog. Sustainable Energy
36
(
3
),
845
849
(
2017
).
28.
S.
Singhal
,
S.
Agarwal
,
S.
Arora
,
P.
Sharma
, and
N.
Singhal
, “
Upgrading techniques for transformation of biogas to bio-CNG: A review
,”
Int. J. Energy Res.
41
(
12
),
1657
1669
(
2017
).
29.
K.
Paritosh
,
M.
Yadav
,
A.
Chawade
,
D.
Sahoo
,
N.
Kesharwani
,
N.
Pareek
, and
V.
Vivekanand
, “
Additives as a support structure for specific biochemical activity boosts in anaerobic digestion: A review
,”
Front. Energy Res.
8
,
88
(
2020
).
30.
R.
Millati
,
R.
Wikandari
,
T.
Ariyanto
,
R. U.
Putri
, and
M. J.
Taherzadeh
, “
Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks
,”
Bioresour. Technol.
304
,
122998
123011
(
2020
).
31.
S.
Bi
,
W.
Qiao
,
L.
Xiong
,
A.
Mahdy
,
S. M.
Wandera
,
D.
Yin
, and
R.
Dong
, “
Improved high solid anaerobic digestion of chicken manure by moderate in situ ammonia stripping and its relation to metabolic pathway
,”
Renewable Energy
146
,
2380
2389
(
2020
).
32.
A.
Mishra
,
M.
Kumar
,
N. S.
Bolan
,
A.
Kapley
,
R.
Kumar
, and
L.
Singh
, “
Multidimensional approaches of biogas production and up-gradation: Opportunities and challenges
,”
Bioresour. Technol.
338
,
125514
125526
(
2021
).
33.
Y.
Zhou
,
N.
Engler
,
Y.
Li
, and
M.
Nelles
, “
The influence of hydrothermal operation on the surface properties of kitchen waste-derived hydrochar: Biogas upgrading
,”
J. Cleaner Prod.
259
,
121020
121028
(
2020
).
34.
L.
Zhang
,
J.
Zhang
, and
K.-C.
Loh
, “
Activated carbon enhanced anaerobic digestion of food waste—Laboratory-scale and Pilot-scale operation
,”
Waste Manage.
75
,
270
279
(
2018
).
35.
L.
Qiu
,
Y. F.
Deng
,
F.
Wang
,
M.
Davaritouchaee
, and
Y. Q.
Yao
, “
A review on biochar-mediated anaerobic digestion with enhanced methane recovery
,”
Renewable Sustainable Energy Rev.
115
,
109373
109386
(
2019
).
36.
D.
Meyer-Kohlstock
,
T.
Haupt
,
E.
Heldt
,
N.
Heldt
, and
E.
Kraft
, “
Biochar as additive in biogas-production from bio-waste
,”
Energies
9
(
4
),
247
256
(
2016
).
37.
S. R.
Shanmugam
,
S.
Adhikari
,
H.
Nam
, and
S.
Kar Sajib
, “
Effect of bio-char on methane generation from glucose and aqueous phase of algae liquefaction using mixed anaerobic cultures
,”
Biomass Bioenergy
108
,
479
486
(
2018
).
38.
Y.
Shen
,
S.
Forrester
,
J.
Koval
, and
M.
Urgun-Demirtas
, “
Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production
,”
J. Cleaner Prod.
167
,
863
874
(
2017
).
39.
M.
Stefaniuk
and
P.
Oleszczuk
, “
Characterization of biochars produced from residues from biogas production
,”
J. Anal. Appl. Pyrolysis
115
,
157
165
(
2015
).
40.
S.
Ren
,
M.
Usman
,
D. C. W.
Tsang
,
O. S.
Thong
,
I.
Angelidaki
,
X.
Zhu
,
S.
Zhang
, and
G.
Luo
, “
Hydrochar-facilitated anaerobic digestion: Evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups
,”
Environ. Sci. Technol.
54
(
9
),
5755
5766
(
2020
).
41.
L.
Leng
,
H.
Huang
,
H.
Li
,
J.
Li
, and
W.
Zhou
, “
Biochar stability assessment methods: A review
,”
Sci. Total Environ.
647
,
210
222
(
2019
).
42.
Z.
Liu
,
Y.
Zhang
, and
Z.
Liu
, “
Comparative production of biochars from corn stalk and cow manure
,”
Bioresour. Technol.
291
,
121855
121862
(
2019
).
43.
D.
Sun
,
L.
Hale
, and
D.
Crowley
, “
Nutrient supplementation of pinewood biochar for use as a bacterial inoculum carrier
,”
Biol. Fertil. Soils
52
(
4
),
515
522
(
2016
).
44.
N.
Saffari
,
M. A.
Hajabbasi
,
H.
Shirani
,
M. R.
Mosaddeghi
, and
A. I.
Mamedov
, “
Biochar type and pyrolysis temperature effects on soil quality indicators and structural stability
,”
J. Environ. Manage.
261
,
110190
110201
(
2020
).
45.
T.
Wang
,
Y.
Zhai
,
Y.
Zhu
,
C.
Li
, and
G.
Zeng
, “
A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties
,”
Renewable Sustainable Energy Rev.
90
,
223
247
(
2018
).
46.
P.
Zhao
,
Y.
Shen
,
S.
Ge
,
Z.
Chen
, and
K.
Yoshikawa
, “
Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment
,”
Appl. Energy
131
,
345
367
(
2014
).
47.
A. D.
Igalavithanaa
,
S.
Mandal
,
N. K.
Niazi
,
M.
Vithanage
,
S. J.
Parikh
,
F. N. D.
Mukome
,
M.
Rizwan
,
P.
Oleszczuk
,
M.
Al-Wabel
,
N.
Bolan
,
D. C. W.
Tsang
,
K.-H.
Kim
, and
Y. S.
Ok
, “
Advances and future directions of biochar characterization methods and applications
,”
Crit. Rev. Environ. Sci. Technol.
47
(
23
),
2275
2330
(
2018
).
48.
Z.
Wan
,
Y.
Sun
,
D. C. W.
Tsang
,
D.
Hou
,
X.
Cao
,
S.
Zhang
,
B.
Gao
, and
Y. S.
Ok
, “
Sustainable remediation with an electroactive biochar system: Mechanisms and perspectives
,”
Green Chem.
22
(
9
),
2688
2711
(
2020
).
49.
L.
Wang
,
J.
Liu
,
Q.
Zhao
,
W.
Wei
, and
Y.
Sun
, “
Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems
,”
Bioresour. Technol.
211
,
1
5
(
2016
).
50.
L.
Appels
,
J.
Baeyens
,
J.
Degrève
, and
R.
Dewil
, “
Principles and potential of the anaerobic digestion of waste activated sludge
,”
Prog. Energy Combust. Sci.
34
,
755
781
(
2008
).
51.
R.
Goswami
,
P.
Chattopadhyay
,
A.
Shome
,
S. N.
Banerjee
,
A. K.
Chakraborty
,
A. K.
Mathew
, and
S.
Chaudhury
, “
An overview of physicochemical mechanisms of biogas production by microbial communities: A step towards sustainable waste management
,” 3
Biotech
6
,
72
83
(
2016
).
52.
M. O.
Fagbohungbe
,
B. M.
Herbert
,
L.
Hurst
,
H.
Li
,
S. Q.
Usmani
, and
K. T.
Semple
, “
Impact of biochar on the anaerobic digestion of citrus peel waste
,”
Bioresour. Technol.
216
,
142
149
(
2016
).
53.
L.
Goswami
,
A.
Kushwaha
,
A.
Singh
,
P.
Saha
,
Y.
Choi
,
M.
Maharana
,
S. V.
Patil
, and
B. S.
Kim
, “
Nano-biochar as a sustainable catalyst for anaerobic digestion: A synergetic closed-loop approach
,”
Catalyst
12
,
186
208
(
2022
).
54.
J.
Zhang
,
W.
Zhao
,
H.
Zhang
,
Z.
Wang
,
C.
Fan
, and
L.
Zang
, “
Recent achievements in enhancing anaerobic digestion with carbon- based functional materials
,”
Bioresour. Technol.
266
,
555
567
(
2018
).
55.
G.
Martins
,
A. F.
Salvador
,
L.
Pereira
, and
M. M.
Alves
, “
Methane production and conductive materials: A critical review
,”
Environ. Sci. Technol.
52
,
10241
10253
(
2018
).
56.
S.
Barua
and
B. R.
Dhar
, “
Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion
,”
Bioresour. Technol.
244
,
698
707
(
2017
).
57.
B.
Schink
,
D.
Montag
,
A.
Keller
, and
N.
Müller
, “
Hydrogen or formate: Alternative key players in methanogenic degradation
,”
Environ. Microbiol. Rep.
9
,
189
202
(
2017
).
58.
T. G.
Ambaye
,
M.
Vaccari
,
E. D.
van Hullebusch
,
A.
Amrane
, and
S.
Rtimi
, “
Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater
,”
Int. J. Environ. Sci. Technol.
18
,
3273
3294
(
2021
).
59.
J.
Ma
,
F.
Chen
,
S.
Xue
,
J.
Pan
,
B.
Khoshnevisan
,
Y.
Yang
,
H.
Liu
, and
L.
Qiu
, “
Improving anaerobic digestion of chicken manure under optimized biochar supplementation strategies
,”
Bioresour. Technol.
325
,
124697
124708
(
2021
).
60.
J.
Pan
,
J.
Ma
,
L.
Zhai
,
T.
Luo
,
Z.
Mei
, and
H.
Liu
, “
Achievements of biochar application for enhanced anaerobic digestion: A review
,”
Bioresour. Technol.
292
,
122058
122067
(
2019
).
61.
A.
Zabaniotou
,
G.
Stavropoulos
, and
V.
Skoulou
, “
Activated carbon from olive kernels in a two-stage process: Industrial improvement
,”
Bioresour. Technol.
99
(
2
),
320
326
(
2008
).
62.
F.
,
C.
Luo
,
L.
Shao
, and
P.
He
, “
Biochar alleviates combined stress of ammonium and acids by firstly enriching methanosaeta and then methanosarcina
,”
Water Res.
90
,
34
43
(
2016
).
63.
Z.
Yin
,
S.
Xu
,
S.
Liu
,
S.
Xu
,
J.
Li
, and
Y.
Zhang
, “
A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium
,”
Bioresour. Technol.
300
,
122680
122687
(
2020
).
64.
J.
Li
,
M.
Zhang
,
Z.
Ye
, and
C.
Yang
, “
Effect of manganese oxide-modified biochar addition on methane production and heavy metal speciation during the anaerobic digestion of sewage sludge
,”
J. Environ. Sci.
76
,
267
277
(
2019
).
65.
Q.
Li
,
M.
Xu
,
G.
Wang
,
R.
Chen
,
W.
Qiao
, and
X.
Wang
, “
Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment
,”
Bioresour. Technol.
249
,
1009
1016
(
2018
).
66.
C.
Wang
,
Y.
Liu
,
X.
Gao
,
H.
Chen
,
X.
Xu
, and
L.
Zhu
, “
Role of biochar in the granulation of anaerobic sludge and improvement of electron transfer characteristics
,”
Bioresour. Technol.
268
(
866
),
28
35
(
2018
).
67.
D.
Wang
,
J.
Ai
,
F.
Shen
,
G.
Yang
,
Y.
Zhang
,
S.
Deng
,
J.
Zhang
,
Y.
Zeng
, and
C.
Song
, “
Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost
,”
Bioresour. Technol.
227
,
286
296
(
2017
).
68.
H.
Zhou
,
R. C.
Brown
, and
Z.
Wen
, “
Biochar as an additive in anaerobic digestion of municipal sludge: Biochar properties and their effects on the digestion performance
,”
ACS Sustainable Chem. Eng.
8
(
16
),
6391
6401
(
2020
).
69.
C.
Yin
,
Y.
Shen
,
R.
Yuan
,
N.
Zhu
,
H.
Yuan
, and
Z.
Lou
, “
Sludge-based biochar-assisted thermophilic anaerobic digestion of waste-activated sludge in microbial electrolysis cell for methane production
,”
Bioresour. Technol.
284
,
315
324
(
2019
).
70.
L.
Zhang
,
E. Y.
Lim
,
K.-C.
Loh
,
Y. S.
Ok
,
J. T. E.
Lee
,
Y.
Shen
,
C.-H.
Wang
,
Y.
Dai
, and
Y. W.
Tong
, “
Biochar enhanced thermophilic anaerobic digestion of food waste: Focusing on biochar particle size, microbial community analysis and pilot-scale application
,”
Energy Convers. Manage.
209
,
112654
112667
(
2020
).
71.
F. C.
Luz
,
S.
Cordiner
,
A.
Manni
,
V.
Mulone
, and
V.
Rocco
, “
Biochar characteristics and early applications in anaerobic digestion—A review
,”
J. Environ. Chem. Eng.
6
,
2892
2909
(
2018
).
72.
T. M.
Huggins
,
A.
Haeger
,
J. C.
Biffinger
, and
Z. J.
Ren
, “
Granular biochar compared with activated carbon for wastewater treatment and resource recovery
,”
Water Res.
94
,
225
232
(
2016
).
73.
J.
Lehmann
and
S.
Joseph
,
Biochar for Environmental Management: Science, Technology and Implementation. II
(
Earthscan from Routledge
,
2015
).
74.
N. A.
Qambrani
,
M. M.
Rahman
,
S.
Won
,
S.
Shim
, and
C.
Ra
, “
Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review
,”
Renewable Sustainable Energy Rev.
79
,
255
273
(
2017
).
75.
B.
Chen
,
D.
Zhou
, and
L.
Zhu
, “
Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
,”
Environ. Sci. Technol.
42
,
5137
5143
(
2008
).
76.
M. O.
Fagbohungbe
,
B. M.
Herbert
,
L.
Hurst
,
C. N.
Ibeto
,
H.
Li
,
S. Q.
Usmani
, and
K. T.
Semple
, “
The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion
,”
Waste Manage.
61
,
236
249
(
2017
).
77.
S. K.
Khanal
and
J.-C.
Huang
, “
Online oxygen control for sulfide oxidation in anaerobic treatment of high-sulfate wastewater
,”
Water Environ. Res.
78
(
4
),
397
408
(
2006
).
78.
S.
Chen
,
A.
Rotaru
,
P. M.
Shrestha
,
N. S.
Malvankar
,
F.
Liu
,
W.
Fan
,
K. P.
Nevin
, and
D. R.
Lovley
, “
Promoting interspecies electron transfer with biochar
,”
Sci. Rep.
4
,
5019
5025
(
2014
).
79.
F. J.
Chacón
,
M.
Sanchez-Monedero
,
L.
Lezama
, and
M. L.
Cayuela
, “
Enhancing biochar redox properties through feedstock selection, metal preloading and post-pyrolysis treatments
,”
Chem. Eng. J.
395
,
125100
125109
(
2020
).
80.
L.
Klüpfel
,
M.
Keiluweit
,
M.
Kleber
, and
M.
Sander
, “
Redox properties of plant biomass-derived black carbon (biochar)
,”
Environ. Sci. Technol.
48
,
5601
5611
(
2014
).
81.
Q.
Hu
,
J.
Jung
,
D.
Chen
,
K.
Leong
,
S.
Song
,
F.
Li
,
B.
Mohan
,
Z.
Yao
,
A. K.
Prabhakar
,
X. H.
Lin
,
E. Y.
Lim
,
L.
Zhang
,
G.
Souradeep
,
Y. S.
Ok
,
H. W.
Kua
,
S. F. Y.
Li
,
H. T. W.
Tan
,
Y.
Dai
,
Y. W.
Tong
,
Y.
Peng
,
S.
Joseph
, and
C.-H.
Wang
, “
Biochar industry to circular economy
,”
Sci. Total Environ.
757
,
143820
(
2020
).
82.
G.
Yang
and
J.
Wang
, “
Synergistic enhancement of biohydrogen production from grass fermentation using biochar combined with zero-valent iron nanoparticles
,”
Fuel
251
,
420
427
(
2019
).
83.
Z. B.
Khalid
,
M. N. I.
Siddique
,
A.
Nayeem
,
T. M.
Adyel
,
S. B.
Ismail
, and
M. Z.
Ibrahim
, “
Biochar application as sustainable precursors for enhanced anaerobic digestion: A systematic review
,”
J. Environ. Chem. Eng.
9
,
105489
105503
(
2021
).
84.
C.
Luo
,
F.
,
L.
Shao
, and
P.
He
, “
Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes
,”
Water Res.
68
,
710
718
(
2015
).
85.
J.
Pan
,
J.
Ma
,
X.
Liu
,
L.
Zhai
,
X.
Ouyang
, and
H.
Liu
, “
Effects of different types of biochar on the anaerobic digestion of chicken manure
,”
Bioresour. Technol.
275
,
258
265
(
2019
).
86.
R. B.
Fidel
,
D. A.
Laird
,
M. L.
Thompson
, and
M.
Lawrinenko
, “
Characterization and quantification of biochar alkalinity
,”
Chemosphere
167
,
367
373
(
2017
).
87.
C. W.
Wambugu
,
E. R.
Rene
,
J.
van de Vossenberg
,
C.
Dupont
, and
E. D.
van Hullebusch
, “
Role of biochar in anaerobic digestion based biorefinery for food waste
,”
Front. Energy Res.
7
,
1
13
(
2019
).
88.
I. H.
Franke-Whittle
,
A.
Walter
,
C.
Ebner
, and
H.
Insam
, “
Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities
,”
Waste Manage.
34
,
2080
2089
(
2014
).
89.
Y.
Shen
,
J. L.
Linville
,
M.
Urgun-Demirtas
,
R. P.
Schoene
, and
S. W.
Snyder
, “
Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal
,”
Appl. Energy
158
,
300
309
(
2015
).
90.
S.
Koutcheiko
,
C. M.
Monreal
,
H.
Kodama
,
T.
McCracken
, and
L.
Kotlyar
, “
Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure
,”
Bioresour. Technol.
98
(
13
),
2459
2464
(
2007
).
91.
S.
Inthapanya
and
T. R.
Preston
, “
Biochar marginally increases biogas production but decreases methane content of the gas in continuous-flow biodigesters charged with cattle manure
,”
Livest. Res. Rural Dev.
25
(published online) (
2013
), http://www.lrrd.org/lrrd25/11/sang25189.htm.
92.
T.
Chen
,
Y.
Zhang
,
H.
Wang
,
W.
Lu
,
Z.
Zhou
,
Y.
Zhang
, and
L.
Ren
, “
Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge
,”
Bioresour. Technol.
164
,
47
54
(
2014
).
93.
N. T.
Nguyen
,
H.
Furukawa
,
F.
Gandara
,
H. T.
Nguyen
,
K. E.
Cordova
, and
O. M.
Yaghi
, “
Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks
,”
Angew. Chem. Int. Ed. Engl.
53
,
10645
10648
(
2014
).
94.
F.
,
Y.
Liu
,
L.
Shao
, and
P.
He
, “
Powdered biochar doubled microbial growth in anaerobic digestion of oil
,”
Appl. Energy
247
,
605
614
(
2019
).
95.
G.
Wang
,
Q.
Li
,
X.
Gao
, and
X. C.
Wang
, “
Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms
,”
Bioresour. Technol.
250
,
812
820
(
2018
).
96.
Y.
Dang
,
D.
Sun
,
T. L.
Woodard
,
L. Y.
Wang
,
K. P.
Nevin
, and
D. E.
Holmes
, “
Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials
,”
Bioresour. Technol.
238
,
30
38
(
2017
).
97.
S. O.
Masebinu
,
E. T.
Akinlabi
,
E.
Muzenda
, and
A. O.
Aboyade
, “
A review of biochar properties and their roles in mitigating challenges with anaerobic digestion
,”
Renewable Sustainable Energy Rev.
103
,
291
307
(
2019
).
98.
M.
Chiappero
,
O.
Norouzi
,
M.
Hu
,
F.
Demichelis
,
F.
Berruti
,
F.
Di Maria
,
O.
Mašek
, and
S.
Fiore
, “
Review of biochar role as additive in anaerobic digestion processes
,”
Renewable Sustainable Energy Rev.
131
,
110037
110062
(
2020
).
99.
L.
Zhang
,
F.
Li
,
A.
Kuroki
,
K.-C.
Loh
,
C.-H.
Wang
,
Y.
Dai
, and
Y. W.
Tong
, “
Methane yield enhancement of mesophilic and thermophilic anaerobic co-digestion of algal biomass and food waste using algal biochar: Semi-continuous operation and microbial community analysis
,”
Bioresour. Technol.
302
,
122892
122900
(
2020
).
100.
M.
Indren
,
C. H.
Birzer
,
S. P.
Kidd
,
T.
Hall
, and
P. R.
Medwell
, “
Effects of biochar parent material and microbial pre-loading in biochar-amended high-solids anaerobic digestion
,”
Bioresour. Technol.
298
,
122457
122466
(
2020
).
101.
M. J.
Cooney
,
K.
Lewis
,
K.
Harris
,
Q.
Zhang
, and
T.
Yan
, “
Start up performance of biochar packed bed anaerobic digesters
,”
J. Water Process. Eng.
9
,
e7
e13
(
2016
).
102.
F.
Liu
,
A.-E.
Rotaru
,
P. M.
Shrestha
,
N. S.
Malvankar
,
K. P.
Nevin
, and
D. R.
Lovley
, “
Promoting direct interspecies electron transfer with activated carbon
,”
Energy Environ. Sci.
5
(
10
),
8982
8989
(
2012
).
103.
T.
Storck
,
B.
Virdis
, and
D. J.
Batstone
, “
Modelling extracellular limitations for mediated vs. direct interspecies electron transfer
,”
ISME J.
10
(
3
),
621
631
(
2016
).
104.
E. J.
Martínez
,
J. G.
Rosas
,
A.
Sotres
,
A.
Moran
,
J.
Cara
,
M. E.
Sánchez
, and
X.
Gómez
, “
Codigestion of sludge and citrus peel wastes: Evaluating the effect of biochar addition on microbial communities
,”
Biochem. Eng. J.
137
,
314
325
(
2018
).
105.
L.
Pampillón-González
,
N. L.
Ortiz-Cornejo
,
M.
Luna-Guido
,
L.
Dendooven
, and
Y. E.
Navarro-Noya
, “
Archaeal and bacterial community structure in an anaerobic digestion reactor (lagoon type) used for biogas production at a pig farm
,”
J. Mol. Biol. Biotechnol.
27
,
306
317
(
2017
).
106.
Z.
Zhao
,
Y.
Zhang
,
D. E.
Holmes
,
Y.
Dang
,
T. L.
Woodard
,
K. P.
Nevin
, and
K. P.
Lovely
, “
Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors
,”
Bioresour. Technol.
209
,
148
156
(
2016
).
107.
J.
Mumme
,
F.
Srocke
,
K.
Heeg
, and
M.
Werner
, “
Use of biochar in anaerobic digestion
,”
Bioresour. Technol.
164
,
189
197
(
2014
).
108.
H. Y.
Yuan
,
L. J.
Ding
,
E. F.
Zama
,
P. P.
Liu
,
W. N.
Hozzein
, and
Y. G.
Zhu
, “
Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate
,”
Environ. Sci. Technol.
52
(
21
),
12198
12207
(
2018
).
109.
Y.
Dang
,
D. E.
Holmes
,
Z.
Zhao
,
T. L.
Woodard
,
Y.
Zhang
,
D.
Sun
,
L.-Y.
Wang
,
K. P.
Nevin
, and
D. R.
Lovely
, “
Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials
,”
Bioresour. Technol.
220
,
516
522
(
2016
).
110.
P. M.
Shrestha
and
A.-E.
Rotaru
, “
Plugging in or going wireless: Strategies for interspecies electron transfer
,”
Front. Microbiol.
5
,
1
8
(
2014
).
111.
L.
Yu
,
Y.
Wang
,
Y.
Yuan
,
J.
Tang
, and
S.
Zhou
, “
Biochar as electron acceptor for microbial extracellular respiration
,”
Geomicrobiol. J.
33
(
6
),
530
536
(
2015
).
112.
S.
Tang
,
Z.
Wang
,
Z.
Liu
,
Y.
Zhang
, and
B.
Si
, “
The role of biochar to enhance anaerobic digestion: A review
,”
J. Renewable Mater.
8
(
9
),
1033
1052
(
2020
).
113.
C. A.
Aceves-Lara
,
E.
Latrille
,
T.
Conte
, and
J. P.
Steyer
, “
Online estimation of VFA, alkalinity and bicarbonate concentrations by electrical conductivity measurement during anaerobic fermentation
,”
Water Sci. Technol.
65
,
1281
1289
(
2012
).
114.
C.
Cimon
,
P.
Kadota
, and
C.
Eskicioglu
, “
Effect of biochar and wood ash amendment on biochemical methane production of wastewater sludge from a temperature phase anaerobic digestion process
,”
Bioresour. Technol.
297
,
122440
122449
(
2020
).
115.
Q.
Xu
,
Y.
Liao
,
E.
Cho
, and
J. H.
Ko
, “
Effects of biochar addition on the anaerobic digestion of carbohydrate-rich, protein-rich, and lipidrich substrates
,”
J. Air Waste Manage. Assoc.
70
(
4
),
455
467
(
2020
).
116.
R.
Shen
,
Y.
Jing
,
J.
Feng
,
J.
Luo
,
J.
Yu
, and
L.
Zhao
, “
Performance of enhanced anaerobic digestion with different pyrolysis biochars and microbial communities
,”
Bioresour. Technol.
296
,
122354
122362
(
2020
).
117.
J.
Kanjanarong
,
B. S.
Giri
,
D. P.
Jaisi
,
F. R.
Oliveira
,
P.
Boonsawang
,
S.
Chaiprapat
,
R. S.
Singh
,
A.
Balakrishna
, and
S. K.
Khanal
, “
Removal of hydrogen sulphide generated during anaerobic treatment of sulfate-laden wastewater using biochar: Evaluation of efficiency and mechanisms
,”
Bioresour. Technol.
234
,
115
121
(
2017
).
118.
A.
Sophia
and
C. E. C.
Lima
, “
Removal of emerging contaminants from the environment by adsorption
,”
Ecotoxicol. Environ. Saf.
150
,
1
17
(
2018
).
119.
X.
Tan
,
Y.
Liu
,
G.
Zeng
,
X.
Wang
,
X.
Hu
,
Y.
Gu
, and
Z.
Yang
, “
Application of biochar for the removal of pollutants from aqueous solutions
,”
Chemosphere
125
,
70
85
(
2015
).
120.
Q.
Cheng
,
F. L.
de Los Reyes
, and
D. F.
Call
, “
Amending anaerobic bioreactors with pyrogenic carbonaceous materials: The influence of material properties on methane generation
,”
Environ. Sci. Water Res. Technol.
4
(
11
),
1794
1806
(
2018
).
121.
Q.
Yin
,
B.
Zhang
,
R.
Wang
, and
Z.
Zhao
, “
Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: A review
,”
Environ. Sci. Pollut. Res.
24
,
26297
26309
(
2017
).
122.
Z.
Wang
,
H.
Guo
,
F.
Shen
,
G.
Yang
,
Y.
Zhang
,
Y.
Zeng
,
L.
Wang
,
H.
Xiao
, and
S.
Deng
, “
Biochar produced from oak sawdust by lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3), and phosphate (PO43−)
,”
Chemosphere
119
,
646
653
(
2015
).
123.
Z.
Zeng
,
S.
Zhang
,
T.
Li
,
F.
Zhao
,
Z.
He
,
H.
Zhao
,
X.
Yang
,
H.
Wang
,
J.
Zhao
, and
M. T.
Rafiq
, “
Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants
,”
J. Zhejiang Univ. -Sci. B
14
,
1152
1161
(
2013
).
124.
J.
Xu
,
A. M.
Mustafa
,
H.
Lin
,
U. Y.
Choe
, and
K.
Sheng
, “
Effect of hydrochar on anaerobic digestion of dead pig carcass after hydrothermal pretreatment
,”
Waste Manage.
78
,
849
856
(
2018
).
125.
Y.
Zhang
,
Z.
Li
, and
I. B.
Mahmood
, “
Recovery of NH4+ by corn cob produced biochars and its potential application as soil conditioner
,”
Front. Environ. Sci. Eng.
8
,
825
834
(
2014
).
126.
L.
Lou
,
Q.
Huang
,
Y.
Lou
,
J.
Lu
,
B.
Hu
, and
Q.
Lin
, “
Adsorption and degradation in the removal of nonylphenol from water by cells immobilized on biochar
,”
Chemosphere
228
,
676
684
(
2019
).
127.
M.
Inyang
,
B.
Gao
,
Y.
Yao
,
Y.
Xue
,
A. R.
Zimmerman
,
P.
Pullammanappallil
, and
X.
Cao
, “
Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass
,”
Bioresour. Technol.
110
,
50
56
(
2012
).
128.
L.
Zhao
,
D.
Xiao
,
Y.
Liu
,
H.
Xu
,
H.
Nan
,
D.
Li
,
Y.
Kan
, and
X.
Cao
, “
Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater
,”
Water Res.
172
,
115494
(
2020
).
129.
A. S.
Giwa
,
H.
Xu
,
F.
Chang
,
J.
Wu
,
Y.
Li
,
N.
Ali
,
S.
Ding
, and
K.
Wang
, “
Effect of biochar on reactor performance and methane generation during the anaerobic digestion of food waste treatment at long-run operations
,”
J. Environ. Chem. Eng.
7
(
4
),
103067
103076
(
2019
).
130.
M.
Pecchi
and
M.
Baratieri
, “
Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review
,”
Renewable Sustainable Energy Rev.
105
,
462
475
(
2019
).
131.
W.
Wei
,
W.
Guo
,
H. H.
Ngo
,
G.
Mannina
,
D.
Wang
,
X.
Chen
,
Y.
Liu
,
L.
Peng
, and
B.-J.
Ni
, “
Enhanced high-quality biomethane production from anaerobic digestion of primary sludge by corn stover biochar
,”
Bioresour. Technol.
306
,
123159
123168
(
2020
).
132.
J.
Ma
,
J.
Pan
,
L.
Qiu
,
Q.
Wang
, and
Z.
Zhang
, “
Biochar triggering multipath methanogenesis and subdued propionic acid accumulation during semi-continuous anaerobic digestion
,”
Bioresour. Technol.
293
,
122026
122034
(
2019
).
133.
Y.
Liang
,
L.
Qiu
,
X.
Guo
,
J.
Pan
,
W.
Lu
, and
Y.
Ge
, “
Start-up performance of chicken manure anaerobic digesters amended with biochar and operated at different temperatures
,”
Nat. Environ. Pollut. Technol.
16
(
2
),
615
621
(
2017
).
134.
M.
Zhang
,
J.
Li
,
Y.
Wang
, and
C.
Yang
, “
Impacts of different biochar types on the anaerobic digestion of sewage sludge
,”
RSC Adv.
9
,
42375
42386
(
2019
).
135.
Gruppe–Bioabfallverwertung SE,
see https://www.stadtwerke-erfurt.de/pb/site/swegruppe/node/19546/Lde/index.html for Public utility company Erfurt–Bio-waste utilisation; accessed 9 January 2016.
136.
Q.
Du
,
S.
Zhang
,
J.
Song
,
Y.
Zhao
, and
F.
Yang
, “
Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions
,”
J. Hazard. Mater.
389
,
122115
122125
(
2020
).
137.
Y.
Qin
,
H.
Wang
,
X.
Li
,
J. J.
Cheng
, and
W.
Wu
, “
Improving methane yield from organic fraction of municipal solid waste (OFMSW) with magnetic rice-straw biochar
,”
Bioresour. Technol.
245
,
1058
1066
(
2017
).
138.
M.
Zhang
and
Y.
Wang
, “
Effects of Fe-Mn-modified biochar addition on anaerobic digestion of sewage sludge: Biomethane production, heavy metal speciation and performance stability
,”
Bioresour. Technol.
313
,
123695
123703
(
2020
).
139.
D.
Deublein
and
A.
Steinhauser
,
Biogas from Waste and Renewable Resources: An Introduction
(
Wiley-VCH
,
Weinheim
,
2008
).
140.
J. L.
Linville
,
Y.
Shen
,
P. A.
Ignacio-de Leon
,
R. P.
Schoene
, and
M.
Urgun-Demirtas
, “
In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale
,”
Waste Manage. Res.
35
,
669
679
(
2017
).
141.
S.
Sethupathi
,
M.
Zhang
,
A.
Rajapaksha
,
S.
Lee
,
N.
Mohamad Nor
,
A. R.
Mohamed
,
M.
Al-Wabel
,
S. S.
Lee
, and
Y. S.
Ok
, “
Biochars as potential adsorbers of CH4, CO2 and H2S
,”
Sustainability
9
,
121
130
(
2017
).
142.
A. E.
Creamer
,
B.
Gao
, and
M.
Zhang
, “
Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood
,”
Chem. Eng. J.
249
,
174
179
(
2014
).
143.
S.
Shahkarami
,
R.
Azargohar
,
A. K.
Dalai
, and
J.
Soltan
, “
Breakthrough CO2 adsorption in bio-based activated carbons
,”
J. Environ. Sci. (China)
34
,
68
76
(
2015
).
144.
X.
Xu
,
Y.
Kan
,
L.
Zhao
, and
X.
Cao
, “
Chemical transformation of CO2 during its capture by waste biomass derived biochars
,”
Environ. Pollut.
213
,
533
540
(
2016
).
145.
P.
Lahijani
,
M.
Mohammadi
, and
A. R.
Mohamed
, “
Metal incorporated biochar as a potential adsorbent for high capacity CO2 capture at ambient condition
,”
J. CO2 Util.
26
,
281
293
(
2018
).
146.
M. R.
Pelaez-Samaniego
,
M. W.
Smith
,
Q.
Zhao
,
T.
Garcia-Perez
,
C.
Frear
, and
M.
Garcia-Perez
, “
Charcoal from anaerobically digested dairy fiber for removal of hydrogen sulfide within biogas
,”
Waste Manage.
76
,
374
382
(
2018
).
147.
X.
Xu
,
X.
Cao
,
L.
Zhao
, and
T.
Sun
, “
Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal
,”
Chemosphere
111
,
296
303
(
2014
).
148.
S.
Kizito
,
S.
Wu
,
W. K.
Kirui
,
M.
Lei
,
Q.
Lu
,
H.
Bah
, and
R.
Dong
, “
Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry
,”
Sci. Total Environ.
505
,
102
112
(
2015
).
149.
C. A.
Takaya
,
L. A.
Fletcher
,
S.
Singh
,
K. U.
Anyikude
, and
A. B.
Ross
, “
Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes
,”
Chemosphere
145
,
518
527
(
2016
).
150.
S.
Kizito
,
S.
Wu
,
S. M.
Wandera
,
L.
Guo
, and
R.
Dong
, “
Evaluation of ammonium adsorption in biochar-fixed beds for treatment of anaerobically digested swine slurry: Experimental optimization and modeling
,”
Sci. Total Environ.
563–564
,
1095
1104
(
2016
).
151.
P. D.
Dissanayake
,
S.
You
,
A. D.
Igalavithana
,
Y.
Xia
,
A.
Bhatnagar
,
S.
Gupta
,
H. W.
Kua
,
S.
Kim
,
J.-H.
Kwon
,
D. C. W.
Tsang
, and
Y. S.
Ok
, “
Biochar-based adsorbents for carbon dioxide capture: A critical review
,”
Renewable Sustainable Energy Rev.
119
,
109582
109595
(
2020
).
152.
S.
Sahota
,
V. K.
Vijay
,
P. M. V.
Subbarao
,
R.
Chandra
,
P.
Ghosh
,
G.
Shah
, and
I. S.
Thakur
, “
Characterization of leaf waste based biochar for cost effective hydrogen sulphide removal from biogas
,”
Bioresour. Technol.
250
,
635
641
(
2018
).
153.
G.
Shang
,
Q.
Li
,
L.
Liu
,
P.
Chen
, and
X.
Huang
, “
Adsorption of hydrogen sulfide by biochars derived from pyrolysis of different agricultural/forestry wastes
,”
J. Air Waste Manage. Assoc.
66
(
1
),
8
16
(
2016
).
154.
Z.
Shao
,
H.
Chen
,
Z.
Zhao
,
Z.
Yang
,
L.
Qiu
, and
X.
Guo
, “
Combined effects of liquid digestate recirculation and biochar on methane yield, enzyme activity, and microbial community during semi-continuous anaerobic digestion
,”
Bioresour. Technol.
364
,
128042
(
2022
).
155.
S.
Wu
,
P.
Ni
,
J.
Li
,
H.
Sun
,
Y.
Wang
,
H.
Luo
,
J.
Dach
, and
R.
Dong
, “
Integrated approach to sustain biogas production in anaerobic digestion of chicken manure under recycled utilization of liquid digestate: Dynamics of ammonium accumulation and mitigation control
,”
Bioresour. Technol.
205
,
75
81
(
2016
).
156.
G. Z.
Wei
,
Z.
Ling
,
B. D.
Rong
,
Z.
Qian
,
R. H.
Hua
, and
C. G.
Hua
, “
Effects of biogas slurry and biochar application on active organic carbon in the topsoil of poplar plantation [in Chinese]
,”
J. Nanjing Univ. (Nat. Sci. Ed.)
40
,
9
14
(
2016
).
157.
Z. J.
Wang
,
Z.
Zheng
,
L.
Zhuo
,
W. L.
Li
,
S. A.
Long
, and
C.
Zhen
, “
Effects of biochar combined with biogas slurry on soil nutrients in leaching state [in Chinese]
,”
Trans. Chin. Soc. Agric. Mach.
49
,
260
267
(
2018
).
158.
D.
Mohan
,
A.
Sarswat
,
Y. S.
Ok
, and
C. U.
Pittman
, “
Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review
,”
Bioresour. Technol.
160
,
191
202
(
2014
).
159.
C.
Ji
,
K.
Cheng
,
D.
Nayak
, and
G.
Pan
, “
Environmental and economic assessment of crop residue competitive utilization for biochar, briquette fuel and combined heat and power generation
,”
J. Cleaner Prod.
192
,
916
923
(
2018
).
160.
C. B. F.
Flores
, “
Application of biochar as an additive to enhance biomethane potential in anaerobic digestion
,” M.S. thesis (
Rochester Institute of Technology
,
2020
).
161.
W.
Li
,
Q.
Dang
,
R. C.
Brown
,
D.
Laird
, and
M. M.
Wright
, “
The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy
,”
Bioresour. Technol.
241
,
959
968
(
2017
).
162.
D.
Dickinson
,
L.
Balduccio
,
J.
Buysse
,
F.
Ronsse
,
G.
Van Huylenbroeck
, and
W.
Prins
, “
Cost‐benefit analysis of using biochar to improve cereals agriculture
,”
Global Change Biol. Bioenergy
7
(
4
),
850
864
(
2015
).
163.
G.
Towler
and
R.
Sinnott
,
Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design
(
Elsevier
,
2012
).
164.
S. S.
Harsono
,
P.
Grundman
,
L. H.
Lau
,
A.
Hansen
,
M. A. M.
Salleh
,
A.
Meyer-Aurich
,
A.
Idris
, and
T. I. M.
Ghazi
, “
Energy balances, greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches
,”
Resour. Conserv. Recycl.
77
,
108
115
(
2013
).
165.
K.
Sahoo
,
E.
Bilek
,
R.
Bergman
, and
S.
Mani
, “
Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems
,”
Appl. Energy
235
,
578
590
(
2019
).
166.
E.
Menya
,
P. W.
Olupot
,
H.
Storz
,
M.
Lubwama
, and
Y.
Kiros
, “
Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review
,”
Chem. Eng. Res. Des.
129
,
271
296
(
2018
).
167.
S.
Shabangu
,
D.
Woolf
,
E. M.
Fisher
,
L. T.
Angenent
, and
J.
Lehmann
, “
Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts
,”
Fuel
117
,
742
748
(
2014
).
168.
S.
Jirka
and
T.
Tomlinson
,
State of the Biochar Industry 2014. A Survey of Commercial Activity in the Biochar Field
(International Biochar Initiative,
2015
), https://biochar-international.org/wp-content/uploads/2018/11/ibi_state_of_the_industry_2014_final.pdf.
169.
R.
Nkoa
, “
Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review
,”
Agron. Sustainable Dev.
34
,
473
492
(
2014
).
170.
I.
Moukazis
,
F. M.
Pellera
, and
E.
Gidarakos
, “
Slaughterhouse by-products treatment using anaerobic digestion
,”
Waste Manage.
71
,
652
662
(
2018
).
171.
H.
Nsamba
,
S.
Hale
,
G.
Cornelissen
, and
R.
Bachmann
, “
Sustainable technologies for smallscale biochar production—A review
,”
J. Sustainable Bioenergy Syst.
5
,
10
31
(
2015
).
172.
A.
Febrisiantosa
,
B.
Ravindran
, and
H. L.
Cho
, “
The effect of Co-additives (biochar and FGD gypsum) on ammonia volatilization during the composting of livestock waste
,”
Sustainability
10
,
795
(
2018
).
173.
D.
Johnravindar
,
J. W. C.
Wong
,
D.
Chakraborty
,
G.
Bodedla
, and
G.
Kaur
, “
Food waste and sewage sludge co-digestion amended with different biochars: VFA kinetics, methane yield and digestate quality assessment
,”
J. Environ. Manage.
290
,
112457
112467
(
2021
).
174.
F.
Monlau
,
C.
Sambusiti
,
N.
Antoniou
,
A.
Barakat
, and
A.
Zabaniotou
, “
A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process
,”
Appl. Energy
148
,
32
38
(
2015
).
175.
F.
Monlau
,
M.
Francavilla
,
C.
Sambusiti
,
N.
Antoniou
,
A.
Solhy
,
A.
Libutti
,
A.
Zabaniotou
,
A.
Barakat
, and
M.
Monteleone
, “
Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment
,”
Appl. Energy
169
,
652
662
(
2016
).
176.
N.
Antoniou
,
F.
Monlau
,
C.
Sambusiti
,
E.
Ficara
,
A.
Barakat
, and
A.
Zabaniotou
, “
Contribution to circular economy options of mixed agricultural wastes management: Coupling anaerobic digestion with gasification for enhanced energy and material recovery
,”
J. Cleaner Prod.
209
,
505
514
(
2019
).
177.
M. K.
Awasthi
,
S. K.
Awasthi
,
Q.
Wang
,
Z.
Wang
,
A. H.
Lahori
,
X.
Ren
,
H.
Chen
,
M.
Wang
,
J.
Zhao
, and
Z.
Zhang
, “
Influence of biochar on volatile fatty acids accumulation and microbial community succession during biosolids composting
,”
Bioresour. Technol.
251
,
158
164
(
2018
).
178.
S. L.
Martin
,
M. L.
Clarke
,
M.
Othman
,
S. J.
Ramsden
, and
H. M.
West
, “
Biochar-mediated reductions in greenhouse gas emissions from soil amended with anaerobic digestates
,”
Biomass Bioenergy
79
,
39
49
(
2014
).
179.
R.
Marchetti
and
F.
Castelli
, “
Biochar from swine solids and digestate influence nutrient dynamics and carbon dioxide release in soil
,”
J. Environ. Qual.
42
,
893
901
(
2013
).
180.
M. T.
Moreira
,
I.
Noya
, and
G.
Feijoo
, “
The prospective use of biochar as adsorption matrix—A review from a lifecycle perspective
,”
Bioresour. Technol.
246
,
135
141
(
2017
).
You do not currently have access to this content.