Recently, pursuing a strategic alternative to traditional fossil fuels has become an important method to meet the increasing energy demands and environmental improvement needs. Polymer electrolyte membrane fuel cells (PEMFCs) can directly convert the chemical energy of fuels into electricity without contamination and the restriction of the Carnot cycle effect. The flow field plate (FFP) is a critical part of a PEMFC that provides mechanical support, conductive medium, the channel of reaction gases, and water and thermal management. However, the complicated mechanisms of the FFP are not very clearly understood since the materials and structures are associated closely with cost, performance, and lifetime. In this paper, different materials and structures are analyzed and their characteristics are summarized. Meanwhile, an opinion was proposed that the porous metal foam flow field will be the most promising development direction in the future, mainly focusing on surface treatment, pattern, and manifold design.

1.
L. J.
Li
,
Y.
Zhang
, and
Q. L.
Li
, “
Literature mining based hydrogen fuel cell research
,” in
11th Annual International Conference on Management Science and Engineering Management (ICMSEM)
(
Springer International Publishing
,
2017
), pp.
117
128
.
2.
Z.
Sun
and
Z. Q.
Sun
, “
Hydrogen generation from methanol reforming for fuel cell applications: A review
,”
J. Cent. South Univ.
27
,
1074
1103
(
2020
).
3.
S.
Mohan
and
S. O.
Bade Shrestha
, “
Evaluation of the performance characteristics and modeling of an alkaline fuel cell
,”
J. Fuel Cell Sci. Technol.
7
,
041016
(
2010
).
4.
Y. D.
Tian
, “
Analysis for modeling of molten carbonate fuel cells material characteristics
,”
Adv. Mater. Res.
568
,
344
347
(
2012
).
5.
H.
Hirata
,
T.
Aoki
, and
K.
Nakajima
, “
Numerical study on the evaporative and condensational dissipation of phosphoric acid in PAFC
,”
J. Power Sources
196
,
8004
8011
(
2011
).
6.
S. Y.
Gómez
and
D.
Hotza
, “
Current developments in reversible solid oxide fuel cells
,”
Renewable Sustainable Energy Rev.
61
,
155
174
(
2016
).
7.
N.
Guerrero Moreno
,
M.
Cisneros Molina
,
D.
Gervasio
, and
J. F.
Pérez Robles
, “
Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost
,”
Renewable Sustainable Energy Rev.
52
,
897
906
(
2015
).
8.
N.
Akhtar
,
A.
Qureshi
,
J.
Scholta
,
C.
Hartnig
,
M.
Messerschmidt
, and
W.
Lehnert
, “
Investigation of water droplet kinetics and optimization of channel geometry for PEM fuel cell cathodes
,”
Int. J. Hydrogen Energy
34
,
3104
3111
(
2009
).
9.
Y.
Wang
,
K. S.
Chen
,
J.
Mishler
,
S. C.
Cho
, and
X. C.
Adroher
, “
A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research
,”
Appl. Energy
88
,
981
1007
(
2011
).
10.
H.
Kahraman
and
M. F.
Orhan
, “
Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling
,”
Energy Convers. Manage.
133
,
363
384
(
2017
).
11.
H.
Hu
,
X. M.
Xu
,
N.
Mei
, and
G. Y.
Tong
, “
Numerical study on the performance of fuel cell with wavy flow field plate
,”
Ionics
26
,
6245
6253
(
2020
).
12.
D. J. L.
Brett
and
N. P.
Brandon
, “
Review of materials and characterization methods for polymer electrolyte fuel cell flow-field plates
,”
J. Fuel Cell Sci. Technol.
4
,
29
44
(
2007
).
13.
P. J.
Hamilton
and
B. G.
Pollet
, “
Polymer electrolyte membrane fuel cell (PEMFC) flow field plate: design, materials and characterisation
,”
Fuel Cells
10
,
489
509
(
2010
).
14.
J.
Wang
and
H.
Wang
, “
Flow-field designs of bipolar plates in PEM fuel cells: Theory and applications
,”
Fuel Cells
12
,
989
1003
(
2012
).
15.
O.
Ijaodola
,
E.
Ogungbemi
,
F. N.
Khatib
,
T.
Wilberforce
,
M.
Ramadan
,
Z. E.
Hassan
,
J.
Thompson
, and
A. G.
Olabi
, “
Evaluating the effect of metal bipolar plate coating on the performance of proton exchange membrane fuel cells
,”
Energies
11
,
3203
(
2018
).
16.
Y.
Song
,
C.
Zhang
,
C.-Y.
Ling
,
M.
Han
,
R.-Y.
Yong
,
D.
Sun
, and
J.
Chen
, “
Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell
,”
Int. J. Hydrogen Energy
45
,
29832
29847
(
2020
).
17.
A.
Tang
,
L.
Crisci
,
L.
Bonville
, and
J.
Jankovic
, “
An overview of bipolar plates in proton exchange membrane fuel cells
,”
J. Renewable Sustainable Energy
13
,
022701
(
2021
).
18.
A.
Pozio
,
F.
Zaza
,
A.
Masci
, and
R. F.
Silva
, “
Bipolar plate materials for PEMFCs: A conductivity and stability study
,”
J. Power Sources
179
,
631
639
(
2008
).
19.
O. A.
Alo
,
I. O.
Otunniyi
,
H.
Pienaar
, and
S. E.
Iyuke
, “
Materials for bipolar plates in polymer electrolyte membrane fuel cell: Performance criteria and current benchmarks
,”
Procedia Manuf.
7
,
395
401
(
2017
).
20.
J.
Wind
,
R.
Späh
,
W.
Kaiser
, and
G.
Böhm
, “
Metallic bipolar plates for PEM fuel cells
,”
J. Power Sources
105
,
256
(
2002
).
21.
W.
Yoon
,
X.
Huang
,
P.
Fazzino
,
K. L.
Reifsnider
, and
M. A.
Akkaoui
, “
Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells
,”
J. Power Sources
179
,
265
273
(
2008
).
22.
D.
Zhang
,
L.
Duan
,
L.
Guo
, and
W.-H.
Tuan
, “
Corrosion behavior of TiN-coated stainless steel as bipolar plate for proton exchange membrane fuel cell
,”
Int. J. Hydrogen Energy
35
,
3721
3726
(
2010
).
23.
G. Q.
Lu
and
C. Y.
Wang
, “
Development of micro direct methanol fuel cells for high power applications
,”
J. Power Sources
144
,
141
145
(
2005
).
24.
S.
Joseph
,
J.
McClure
,
R.
Chianelli
,
P.
Pich
, and
P.
Sebastian
, “
Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC)
,”
Int. J. Hydrogen Energy
30
,
1339
1344
(
2005
).
25.
Y.
Show
, “
Electrically conductive amorphous carbon coating on metal bipolar plates for PEFC
,”
Surf. Coat. Technol.
202
,
1252
1255
(
2007
).
26.
Y.
Fu
,
G.
Lin
,
M.
Hou
,
B.
Wu
,
Z.
Shao
, and
B.
Yi
, “
Carbon-based films coated 316L stainless steel as bipolar plate for proton exchange membrane fuel cells
,”
Int. J. Hydrogen Energy
34
,
405
409
(
2009
).
27.
R. A.
Antunes
,
M. C. L.
de Oliveira
,
G.
Ett
, and
V.
Ett
, “
Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance
,”
J. Power Sources
196
,
2945
2961
(
2011
).
28.
S.
Dhakate
,
R.
Mathur
,
B.
Kakati
, and
T.
Dhami
, “
Properties of graphite-composite bipolar plate prepared by compression molding technique for PEM fuel cell
,”
Int. J. Hydrogen Energy
32
,
4537
4543
(
2007
).
29.
X.
Yan
,
M.
Hou
,
H.
Zhang
,
F.
Jing
,
P.
Ming
, and
B.
Yi
, “
Performance of PEMFC stack using expanded graphite bipolar plates
,”
J. Power Sources
160
,
252
257
(
2006
).
30.
T.
Park
,
I.
Chang
,
Y. H.
Lee
,
S.
Ji
, and
S. W.
Cha
, “
Analysis of operational characteristics of polymer electrolyte fuel cell with expanded graphite flow-field plates via electrochemical impedance investigation
,”
Energy
66
,
77
81
(
2014
).
31.
J.
Huang
,
D. G.
Baird
, and
J. E.
McGrath
, “
Development of fuel cell bipolar plates from graphite filled wet-lay thermoplastic composite materials
,”
J. Power Sources
150
,
110
119
(
2005
).
32.
N. H.
Kim
,
T.
Kuila
,
K. M.
Kim
,
S. H.
Nahm
, and
J. H.
Lee
, “
Material selection windows for hybrid carbons/poly(phenylene sulfide) composite for bipolar plates of fuel cell
,”
Polym. Test.
31
,
537
545
(
2012
).
33.
A.
Adloo
,
M.
Sadeghi
,
M.
Masoomi
, and
H. N.
Pazhooh
, “
High performance polymeric bipolar plate based on polypropylene/graphite/graphene/nano-carbon black composites for PEM fuel cells
,”
Renewable Energy
99
,
867
874
(
2016
).
34.
J. N.
Martins
,
M.
Kersch
,
V.
Altstädt
, and
R. V. B.
Oliveira
, “
Poly(vinylidene fluoride)/polyaniline/carbon nanotubes nanocomposites: Influence of preparation method and oscillatory shear on morphology and electrical conductivity
,”
Polym. Test.
32
,
1511
1521
(
2013
).
35.
J. W.
Lim
,
M.
Kim
,
Y. H.
Yu
, and
D. G.
Lee
, “
Development of carbon/PEEK composite bipolar plates with nano-conductive particles for High-Temperature PEM fuel cells (HT-PEMFCs)
,”
Compos. Struct.
118
,
519
527
(
2014
).
36.
O. A.
Alo
,
I. O.
Otunniyi
, and
H.
Pienaar
, “
Development of graphite-filled polymer blends for application in bipolar plates
,”
Polym. Compos.
41
,
3364
3375
(
2020
).
37.
Y.
Zhang
,
Y.
Tao
, and
J.
Shao
, “
Application of porous materials for the flow field in polymer electrolyte membrane fuel cells
,”
J. Power Sources
492
,
229664
(
2021
).
38.
R. M.
El-Zoheiry
,
S.
Ookawara
, and
M.
Ahmed
, “
Efficient fuel utilization by enhancing the under-rib mass transport using new serpentine flow field designs of direct methanol fuel cells
,”
Energy Convers. Manage.
144
,
88
103
(
2017
).
39.
F.
Barbir
, “
PEM electrolysis for production of hydrogen from renewable energy sources
,”
Sol. Energy
78
,
661
669
(
2005
).
40.
M.
Ji
and
Z.
Wei
, “
A review of water management in polymer electrolyte membrane fuel cells
,”
Energies
2
,
1057
1106
(
2009
).
41.
H. C.
Deng
,
J. X.
Zhou
, and
Y. F.
Zhang
, “
Design and simulation of air-breathing micro direct methanol fuel cells with different anode flow fields
,”
Micromachines
12
,
253
(
2021
).
42.
M.
Marappan
,
K.
Palaniswamy
,
T.
Velumani
,
K. B.
Chul
,
R.
Velayutham
,
P.
Shivakumar
, and
S.
Sundaram
, “
Performance studies of proton exchange membrane fuel cells with different flow field designs: Review
,”
Chem. Rec.
21
,
663
714
(
2021
).
43.
N. N.
Guo
,
M. C.
Leu
, and
U. O.
Koylu
, “
Network based optimization model for pin-type flow field of polymer electrolyte membrane fuel cell
,”
Int. J. Hydrogen Energy
38
,
6750
6761
(
2013
).
44.
W. S.
Vaz
, “
Multiobjective optimization of pin-type flow channels using a reinterpretation of Murray's law
,”
Electronics
10
,
1698
(
2021
).
45.
H. C.
Kang
,
K. M.
Jum
, and
Y. J.
Sohn
, “
Performance of unit PEM fuel cells with a leaf-vein-simulating flow field-patterned bipolar plate
,”
Int. J. Hydrogen Energy
44
,
24036
24042
(
2019
).
46.
A. P.
Manso
,
F. F.
Marzo
,
J.
Barranco
,
X.
Garikano
, and
M. G.
Mujika
, “
Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review
,”
Int. J. Hydrogen Energy
37
,
15256
15287
(
2012
).
47.
H. C.
Liu
,
W. M.
Yang
,
J.
Tan
,
Y.
An
, and
L. S.
Cheng
, “
Numerical analysis of parallel flow fields improved by micro-distributor in proton exchange membrane fuel cells
,”
Energy Convers. Manage.
176
,
99
109
(
2018
).
48.
D.
Zhong
,
R.
Lin
,
D. C.
Liu
, and
X.
Cai
, “
Structure optimization of anode parallel flow field for local starvation of proton exchange membrane fuel cell
,”
J. Power Sources
403
,
1
10
(
2018
).
49.
S. J.
Tong
,
J. C.
Bachman
,
A.
Santamaria
, and
J. W.
Park
, “
Experimental investigation on a polymer electrolyte membrane fuel cell (PEMFC) parallel flow field design with external two-valve regulation on cathode channels
,”
J. Power Sources
242
,
195
201
(
2013
).
50.
M.
Ghasabehi
,
M.
Ashrafi
, and
M.
Shams
, “
Performance analysis of an innovative parallel flow field design of proton exchange membrane fuel cells using multiphysics simulation
,”
Fuel
285
,
119194
(
2021
).
51.
X.
Chen
,
Y.
Chen
,
Q.
Liu
,
J. H.
Xu
,
Q. X.
Liu
,
W. B.
Li
,
Y.
Zhang
,
Z. M.
Wan
, and
X. D.
Wang
, “
Performance study on a stepped flow field design for bipolar plate in PEMFC
,”
Energy Rep.
7
,
336
347
(
2021
).
52.
B.
Timurkutluk
and
M. Z.
Chowdhury
, “
Numerical investigation of convergent and divergent parallel flow fields for PEMFCs
,”
Fuel Cells
18
,
441
448
(
2018
).
53.
M.
Ashrafi
,
H.
Kanani
, and
M.
Shams
, “
Numerical and experimental study of two-phase flow uniformity in channels of parallel PEM fuel cells with modified Z-type flow-fields
,”
Energy
147
,
317
328
(
2018
).
54.
M. S.
Hossain
,
B.
Shabani
, and
C. P.
Cheung
, “
Enhanced gas flow uniformity across parallel channel cathode flow field of proton exchange membrane fuel cells
,”
Int. J. Hydrogen Energy
42
,
5272
5283
(
2017
).
55.
S.
Maharudrayya
,
S.
Jayanti
, and
A. P.
Deshpande
, “
Pressure drop and flow distribution in multiple parallel-channel configurations used in proton-exchange membrane fuel cell stacks
,”
J. Power Sources
157
,
358
367
(
2006
).
56.
M. Z.
Chowdhury
and
Y. E.
Akansu
, “
Novel convergent-divergent serpentine flow fields effect on PEM fuel cell performance
,”
Int. J. Hydrogen Energy
42
,
25686
25694
(
2017
).
57.
M. Z.
Chowdhury
and
B.
Timurkutluk
, “
Transport phenomena of convergent and divergent serpentine flow fields for PEMFC
,”
Energy
161
,
104
117
(
2018
).
58.
H. C.
Liu
,
W. M.
Yang
,
L. S.
Cheng
, and
J.
Tan
, “
Numerical analysis of different multi-serpentine flow fields for proton exchange membrane fuel cells
,”
Fuel Cells
18
,
173
180
(
2018
).
59.
S. M.
Rahgoshay
,
A. A.
Ranjbar
,
A.
Ramiar
, and
E.
Alizadeh
, “
Thermal investigation of a PEM fuel cell with cooling flow field
,”
Energy
134
,
61
73
(
2017
).
60.
C. Y.
Hsueh
,
H. S.
Chu
,
W. M.
Yan
,
G. C.
Leu
, and
J. I.
Tsai
, “
Three-dimensional analysis of a plate methanol steam micro-reformer and a methanol catalytic combustor with different flow channel designs
,”
Int. J. Hydrogen Energy
36
,
13575
13586
(
2011
).
61.
W.
Yuan
,
A. Y.
Wang
,
Z. G.
Yan
,
Z. H.
Tan
,
Y.
Tang
, and
H. R.
Xia
, “
Visualization of two-phase flow and temperature characteristics of an active liquid-feed direct methanol fuel cell with diverse flow fields
,”
Appl. Energy
179
,
85
98
(
2016
).
62.
B. M.
Sudaroli
and
A. K.
Kolar
, “
Experimental and numerical study of serpentine flow fields for improving direct methanol fuel cell performance
,”
Fuel Cells
15
,
826
838
(
2015
).
63.
D. H.
Jeon
,
S.
Greenway
,
S.
Shimpalee
, and
J. W.
Van Zee
, “
The effect of serpentine flow-field designs on PEM fuel cell performance
,”
Int. J. Hydrogen Energy
33
,
1052
1066
(
2008
).
64.
X. D.
Wang
,
Y. Y.
Duan
,
W. M.
Yan
, and
X. F.
Peng
, “
Local transport phenomena and cell performance of PEM fuel cells with various serpentine flow field designs
,”
J. Power Sources
175
,
397
407
(
2008
).
65.
H. C.
Deng
,
S. T.
Sang
,
Y. F.
Zhang
,
Z. P.
Li
, and
X. W.
Liu
, “
Investigations of silicon-based air-breathing micro direct methanol fuel cells with different anode flow fields
,”
Microelectron. Eng.
111
,
180
184
(
2013
).
66.
F.
Mojica
,
M. A.
Rahman
,
J. M.
Mora
,
J. D.
Ocon
, and
P. Y. A.
Chuang
, “
Experimental study of three channel designs with model comparison in a PEM fuel cell
,”
Fuel Cells
20
,
547
557
(
2020
).
67.
S.
Abdulla
and
V. S.
Patnaikuni
, “
Detailed analysis of polymer electrolyte membrane fuel cell with enhanced cross-flow split serpentine flow field design
,”
Int. J. Energy Res.
43
,
2806
2820
(
2019
).
68.
W.
Yuan
,
A. Y.
Wang
,
G. Z.
Ye
,
B. Y.
Pan
,
K. R.
Tang
, and
H. M.
Chen
, “
Dynamic relationship between the CO2 gas bubble behavior and the pressure drop characteristics in the anode flow field of an active liquid-feed direct methanol fuel cell
,”
Appl. Energy
188
,
431
443
(
2017
).
69.
C. H.
Min
,
J.
He
,
K.
Wang
,
L. Y.
Xie
, and
X. G.
Yang
, “
A comprehensive analysis of secondary flow effects on the performance of PEMFCs with modified serpentine flow fields
,”
Energy Convers. Manage.
180
,
1217
1224
(
2019
).
70.
P. V.
Suresh
,
S.
Jayanti
,
A. P.
Deshpande
, and
P.
Haridoss
, “
An improved serpentine flow field with enhanced cross-flow for fuel cell applications
,”
Int. J. Hydrogen Energy
36
,
6067
6072
(
2011
).
71.
S.
Abdulla
,
M. M.
Seepana
, and
V. S.
Patnaikuni
, “
Performance comparison of PEM fuel cell with enhanced cross-flow split serpentine and single serpentine flow field designs
,”
Arabian J. Sci. Eng.
45
,
7691
7703
(
2020
).
72.
N.
Vinh
and
H.-M.
Kim
, “
Comparison of numerical and experimental studies for flow-field optimization based on under-rib convection in polymer electrolyte membrane fuel cells
,”
Energies
9
,
844
(
2016
).
73.
S.
Arun Saco
,
R.
Thundil Karuppa Raj
, and
P.
Karthikeyan
, “
A study on scaled up proton exchange membrane fuel cell with various flow channels for optimizing power output by effective water management using numerical technique
,”
Energy
113
,
558
573
(
2016
).
74.
M.
Rahimi-Esbo
,
A.
Ramiar
,
A. A.
Ranjbar
, and
E.
Alizadeh
, “
Design, manufacturing, assembling and testing of a transparent PEM fuel cell for investigation of water management and contact resistance at dead-end mode
,”
Int. J. Hydrogen Energy
42
,
11673
11688
(
2017
).
75.
M.
Rahimi-Esbo
,
A. A.
Ranjbar
,
A.
Ramiar
,
E.
Alizadeh
, and
M.
Aghaee
, “
Improving PEM fuel cell performance and effective water removal by using a novel gas flow field
,”
Int. J. Hydrogen Energy
41
,
3023
3037
(
2016
).
76.
E.
Alizadeh
,
M.
Rahimi-Esbo
,
S. M.
Rahgoshay
,
S. H. M.
Saadat
, and
M.
Khorshidian
, “
Numerical and experimental investigation of cascade type serpentine flow field of reactant gases for improving performance of PEM fuel cell
,”
Int. J. Hydrogen Energy
42
,
14708
14724
(
2017
).
77.
Y. F.
Zhang
,
P.
Zhang
,
Z. Y.
Yuan
,
H.
He
,
Y. R.
Zhao
, and
X. W.
Liu
, “
A tapered serpentine flow field for the anode of micro direct methanol fuel cells
,”
J. Power Sources
196
,
3255
3259
(
2011
).
78.
L. S.
Freire
,
E.
Antolini
,
M.
Linardi
,
E. I.
Santiago
, and
R. R.
Passos
, “
Influence of operational parameters on the performance of PEMFCs with serpentine flow field channels having different (rectangular and trapezoidal) cross-section shape
,”
Int. J. Hydrogen Energy
39
,
12052
12060
(
2014
).
79.
M.
Seyhan
,
Y. E.
Akansu
,
M.
Murat
,
Y.
Korkmaz
, and
S. O.
Akansu
, “
Performance prediction of PEM fuel cell with wavy serpentine flow channel by using artificial neural network
,”
Int. J. Hydrogen Energy
42
,
25619
25629
(
2017
).
80.
R.
Gundlapalli
and
S.
Jayanti
, “
Effective splitting of serpentine flow field for applications in large-scale flow batteries
,”
J. Power Sources
487
,
229409
(
2021
).
81.
J.
Sun
,
M. L.
Zheng
,
Y. S.
Luo
, and
Z. T.
Yu
, “
Three-dimensional detached serpentine flow field design for redox flow batteries
,”
J. Power Sources
428
,
136
145
(
2019
).
82.
K. B.
Shyam Prasad
,
P. V.
Suresh
, and
S.
Jayanti
, “
A hydrodynamic network model for interdigitated flow fields
,”
Int. J. Hydrogen Energy
34
,
8289
8301
(
2009
).
83.
S.
Luo
and
H.
Liu
, “
Direct measurement of current density under land and two channels in PEM fuel cells with interdigitated flow fields
,”
Int. J. Hydrogen Energy
39
,
9440
9446
(
2014
).
84.
G. S.
Zhang
,
L. J.
Guo
,
B.
Ma
, and
H. T.
Liu
, “
Comparison of current distributions in proton exchange membrane fuel cells with interdigitated and serpentine flow fields
,”
J. Power Sources
188
,
213
219
(
2009
).
85.
Q-f
Jian
,
G-q
Ma
,
Y.
Zhao
, and
K.
Xiao
, “
Humidification effects of proton exchange membrane fuel cell with conventional and interdigitated flow field
,”
J. Fuel Cell Sci. Technol.
10
,
061007
(
2013
).
86.
M.
Macdonald
and
R. M.
Darling
, “
Comparing velocities and pressures in redox flow batteries with interdigitated and serpentine channels
,”
AlChE J.
65
,
e16553
(
2019
).
87.
T.
Jyothi Latha
and
S.
Jayanti
, “
Hydrodynamic analysis of flow fields for redox flow battery applications
,”
J. Appl. Electrochem.
44
,
995
1006
(
2014
).
88.
L. K. K.
Maia
and
R.
Sousa
, “
Three-dimensional CFD modeling of direct ethanol fuel cells: Evaluation of anodic flow field structures
,”
J. Appl. Electrochem.
47
,
25
37
(
2016
).
89.
A. D.
Santamaria
,
J.
Bachman
, and
J. W.
Park
, “
Cold-start of parallel and interdigitated flow-field polymer electrolyte membrane fuel cell
,”
Electrochim. Acta
107
,
327
338
(
2013
).
90.
T.
Berning
,
M.
Odgaard
, and
S. K.
Kær
, “
A study of multi-phase flow through the cathode side of an interdigitated flow field using a multi-fluid model
,”
J. Power Sources
195
,
4842
4852
(
2010
).
91.
L.
V
and
K.
P
, “
Performance enhancement of interdigitated flow channel of PEMFC by scaling up study
,”
Energy Source Part A
42
,
1785
1796
(
2019
).
92.
N. J.
Cooper
,
A. D.
Santamaria
,
M. K.
Becton
, and
J. W.
Park
, “
Investigation of the performance improvement in decreasing aspect ratio interdigitated flow field PEMFCs
,”
Energy Convers. Manage.
136
,
307
317
(
2017
).
93.
X. Y.
Zhang
,
S. Z.
Chen
,
Z. X.
Xia
,
X.
Zhang
, and
H. T.
Liu
, “
Performance enhancements of PEM fuel cells with narrower outlet channels in interdigitated flow field
,”
Energy Procedia
158
,
1412
1417
(
2018
).
94.
F.
Li
,
Y.
Wei
,
P.
Tan
,
Y.
Zeng
, and
Y.
Yuan
, “
Numerical investigations of effects of the interdigitated channel spacing on overall performance of vanadium redox flow batteries
,”
J. Storage Mater.
32
,
101781
(
2020
).
95.
A. D.
Santamaria
,
N. J.
Cooper
,
M. K.
Becton
, and
J. W.
Park
, “
Effect of channel length on interdigitated flow-field PEMFC performance: A computational and experimental study
,”
Int. J. Hydrogen Energy
38
,
16253
16263
(
2013
).
96.
V.
Thitakamol
,
A.
Therdthianwong
, and
S.
Therdthianwong
, “
Mid-baffle interdigitated flow fields for proton exchange membrane fuel cells
,”
Int. J. Hydrogen Energy
36
,
3614
3622
(
2011
).
97.
Y.
Zeng
,
F.
Li
,
F.
Lu
,
X.
Zhou
,
Y.
Yuan
,
X.
Cao
, and
B.
Xiang
, “
A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries
,”
Appl. Energy
238
,
435
441
(
2019
).
98.
H.-W.
Ku
and
H.-W.
Wu
, “
Influences of operational factors on proton exchange membrane fuel cell performance with modified interdigitated flow field design
,”
J. Power Sources
232
,
199
208
(
2013
).
99.
J.
Sun
,
M.
Zheng
,
Z.
Yang
, and
Z.
Yu
, “
Flow field design pathways from lab-scale toward large-scale flow batteries
,”
Energy
173
,
637
646
(
2019
).
100.
A. D.
Santamaria
,
J.
Bachman
, and
J. W.
Park
, “
Design strategy for a polymer electrolyte membrane fuel cell flow-field capable of switching between parallel and interdigitated configurations
,”
Int. J. Hydrogen Energy
38
,
5807
5812
(
2013
).
101.
S.
Chen
,
X.
Zhang
, and
H.
Liu
, “
Effect of pressure difference between adjacent channels in an adjustable flow field in PEM fuel cells
,”
Int. J. Hydrogen Energy
42
,
4667
4672
(
2017
).
102.
S.
Meenakshi
and
P. C.
Ghosh
, “
Study of an innovative versatile flow design suitable for fuel cells
,”
J. Electrochem. Energy Convers. Storage
14
,
041003
(
2017
).
103.
B. R.
Friess
and
M.
Hoorfar
, “
Development of a novel radial cathode flow field for PEMFC
,”
Int. J. Hydrogen Energy
37
,
7719
7729
(
2012
).
104.
J.-Y.
Jang
,
C.-H.
Cheng
,
W.-T.
Liao
,
Y.-X.
Huang
, and
Y.-C.
Tsai
, “
Experimental and numerical study of proton exchange membrane fuel cell with spiral flow channels
,”
Appl. Energy
99
,
67
79
(
2012
).
105.
A.
Ozden
,
M.
Ercelik
,
D.
Ouellette
,
C. O.
Colpan
,
H.
Ganjehsarabi
, and
F.
Hamdullahpur
, “
Designing, modeling and performance investigation of bio-inspired flow field based DMFCs
,”
Int. J. Hydrogen Energy
42
,
21546
21558
(
2017
).
106.
A.
Mohammedi
,
Y.
Sahli
, and
H.
Ben Moussa
, “
3D investigation of the channel cross-section configuration effect on the power delivered by PEMFCs with straight channels
,”
Fuel
263
,
116713
(
2020
).
107.
D. H.
Ahmed
and
H. J.
Sung
, “
Effects of channel geometrical configuration and shoulder width on PEMFC performance at high current density
,”
J. Power Sources
162
,
327
339
(
2006
).
108.
Y.
Kerkoub
,
A.
Benzaoui
,
F.
Haddad
, and
Y. K.
Ziari
, “
Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell
,”
Energy Convers. Manage.
174
,
260
275
(
2018
).
109.
Q.
Ding
,
H. L.
Zhao
,
Z. M.
Wan
,
Y. R.
Yang
,
C.
Yang
, and
X. D.
Wang
, “
Performance of parallel, interdigitated, and serpentine flow field PEM fuel cells with straight or wavelike channels
,”
J. Energy Eng.
146
,
04020054
(
2020
).
110.
Y.
Jia
,
B.
Sunden
, and
G.
Xie
, “
A parametric comparison of temperature uniformity and energy performance of a PEMFC having serpentine wavy channels
,”
Int. J. Energy Res.
43
,
2722
2736
(
2018
).
111.
H.
Hu
,
X.
Xu
,
N.
Mei
, and
C.
Li
, “
Multi-angle study of the effects of different wave flow field plates on fuel cell performance
,”
Int. J. Mod Phys B
35
,
2150062
(
2021
).
112.
M.
Yue
,
J.
Yan
,
H.
Zhang
,
Q.
Zheng
, and
X.
Li
, “
The crucial role of parallel and interdigitated flow channels in a trapezoid flow battery
,”
J. Power Sources
512
,
230497
(
2021
).
113.
J.
Shen
,
L.
Xu
,
H.
Chang
,
Z.
Tu
, and
S. H.
Chan
, “
Partial flooding and its effect on the performance of a proton exchange membrane fuel cell
,”
Energy Convers. Manage.
207
,
112537
(
2020
).
114.
H.-C.
Chiu
,
J.-H.
Jang
,
W.-M.
Yan
,
H.-Y.
Li
, and
C.-C.
Liao
, “
A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields
,”
Appl. Energy
96
,
359
370
(
2012
).
115.
X.
Chen
,
Z.
Yu
,
X.
Wang
,
W.
Li
,
Y.
Chen
,
C.
Jin
,
G.
Gong
, and
Z.
Wan
, “
Influence of wave parallel flow field design on the performance of PEMFC
,”
J. Energy Eng.
147
, 04020080 (
2021
).
116.
W.
Yuan
,
Y.
Tang
,
X.
Yang
, and
Z.
Wan
, “
Porous metal materials for polymer electrolyte membrane fuel cells—A review
,”
Appl. Energy
94
,
309
329
(
2012
).
117.
L.
Xuan
,
Y.
Wang
,
D.
Mei
, and
J.
Lan
, “
Design and modelling of 3D bionic cathode flow field for proton exchange membrane fuel cell
,”
Energies
14
,
6044
(
2021
).
118.
T.
Shudo
and
K.
Suzuki
, “
Performance improvement in direct methanol fuel cells using a highly porous corrosion-resisting stainless steel flow field
,”
Int. J. Hydrogen Energy
33
,
2850
2856
(
2008
).
119.
R.
Chen
and
T. S.
Zhao
, “
Porous current collectors for passive direct methanol fuel cells
,”
Electrochim. Acta
52
,
4317
4324
(
2007
).
120.
A.
Jo
,
S.
Ahn
,
K.
Oh
,
W.
Kim
, and
H.
Ju
, “
Effects of metal foam properties on flow and water distribution in polymer electrolyte fuel cells (PEFCs)
,”
Int. J. Hydrogen Energy
43
,
14034
14046
(
2018
).
121.
S.
Subramaniam
,
G.
Rajaram
,
K.
Palaniswamy
, and
V. R.
Jothi
, “
Comparison of perforated and serpentine flow fields on the performance of proton exchange membrane fuel cell
,”
J. Energy Inst.
90
,
363
371
(
2017
).
122.
M. J.
Leeuwner
,
D. P.
Wilkinson
, and
E. L.
Gyenge
, “
Novel graphene foam microporous layers for PEM fuel cells: Interfacial characteristics and comparative performance
,”
Fuel Cells
15
,
790
801
(
2015
).
123.
M.
Virk
,
M.
Mustafa
, and
A.
Holdø
, “
Numerical analyses of a PEM fuel cell's performance having a perforated type gas flow distributor
,”
Int. J. Multiphys.
3
,
347
360
(
2009
).
124.
S. S.
Hsieh
and
Y. W.
Su
, “
Effects of anode and cathode perforated flow field plates on proton exchange membrane fuel cell performance
,”
Int. J. Energy Res.
38
,
944
953
(
2014
).
125.
P. E.
Scott
and
R. K.
Calay
, “
Experimental investigation of a novel design of proton exchange membrane fuel cell stack
,”
Heat Transfer Eng.
34
,
925
937
(
2013
).
126.
O.
Gholami
,
S. J.
Imen
, and
M.
Shakeri
, “
Effect of non-uniform parallel channel on performance of passive direct methanol fuel cell
,”
Int. J. Hydrogen Energy
38
,
3395
3400
(
2013
).
127.
Z.
Guo
and
A.
Faghri
, “
Development of planar air breathing direct methanol fuel cell stacks
,”
J. Power Sources
160
,
1183
1194
(
2006
).
128.
Z.-G.
Shao
,
W.-F.
Lin
,
F.
Zhu
,
P. A.
Christensen
,
M.
Li
, and
H.
Zhang
, “
Novel electrode structure for DMFC operated with liquid methanol
,”
Electrochem. Commun.
8
,
5
8
(
2006
).
129.
K.
Scott
,
P.
Argyropoulos
,
P.
Yiannopoulos
, and
W. M.
Taama
, “
Electrochemical and gas evolution characteristics of direct methanol fuel cells with stainless steel mesh flow beds
,”
J. Appl. Electrochem.
31
,
823
832
(
2001
).
130.
A.
Kulshreshtha
and
S. K.
Dhakad
, “
Preparation of metal foam by different methods: A review
,”
Mater. Today: Proc.
26
,
1784
1790
(
2020
).
131.
S.
Huo
,
W.
Shi
,
R.
Wang
,
B.
Lu
,
Y.
Wang
,
K.
Jiao
, and
Z.
Hou
, “
Elucidating the operating behavior of PEM fuel cell with nickel foam as cathode flow field
,”
Sci. China Technol. Sci.
64
,
1041
1056
(
2021
).
132.
G.
Zhang
,
Z.
Bao
,
B.
Xie
,
Y.
Wang
, and
K.
Jiao
, “
Three-dimensional multi-phase simulation of PEM fuel cell considering the full morphology of metal foam flow field
,”
Int. J. Hydrogen Energy
46
,
2978
2989
(
2021
).
133.
A.
Kumar
and
R. G.
Reddy
, “
Materials and design development for bipolar/end plates in fuel cells
,”
J. Power Sources
129
,
62
67
(
2004
).
134.
Y.
Wu
,
X.
Lu
,
J. I. S.
Cho
,
L.
Rasha
,
M.
Whiteley
,
T. P.
Neville
,
R.
Ziesche
,
N.
Kardjilov
,
H.
Markötter
,
I.
Manke
,
X.
Zhang
,
P. R.
Shearing
, and
D. J. L.
Brett
, “
Multi-length scale characterization of compression on metal foam flow-field based fuel cells using x-ray computed tomography and neutron radiography
,”
Energy Convers. Manage.
230
,
113785
(
2021
).
135.
M.
Suo
,
K.
Sun
,
R.
Chen
,
Z.
Che
,
Z.
Zeng
,
Q.
Li
,
X.
Tao
, and
T.
Wang
, “
Oxygen transport in proton exchange membrane fuel cells with metal foam flow fields
,”
J. Power Sources
521
,
230937
(
2022
).
136.
A.
Azarafza
,
M. S.
Ismail
,
M.
Rezakazemi
, and
M.
Pourkashanian
, “
Comparative study of conventional and unconventional designs of cathode flow fields in PEM fuel cell
,”
Renewable Sust. Energy Rev.
116
,
109420
(
2019
).
137.
Y.
Tang
,
W.
Yuan
,
M.
Pan
, and
Z.
Wan
, “
Feasibility study of porous copper fiber sintered felt: A novel porous flow field in proton exchange membrane fuel cells
,”
Int. J. Hydrogen Energy
35
,
9661
9677
(
2010
).
138.
T.
Wan
,
Y.
Liu
,
C.
Zhou
,
X.
Chen
, and
Y.
Li
, “
Fabrication, properties, and applications of open-cell aluminum foams: A review
,”
J. Mater. Sci. Technol.
62
,
11
24
(
2021
).
139.
S.
Singh
and
N.
Bhatnagar
, “
A survey of fabrication and application of metallic foams (1925–2017)
,”
J. Porous Mater.
25
,
537
554
(
2017
).
140.
S.
Li
,
W.
Zhou
,
R.
Liu
,
J.
Huang
, and
X.
Chu
, “
Fabrication of porous metal fiber sintered sheet as a flow field for proton exchange membrane fuel cell
,”
Curr. Appl. Phys.
20
,
686
695
(
2020
).
141.
M. H.
Chakrabarti
,
N. P.
Brandon
,
S. A.
Hajimolana
,
F.
Tariq
,
V.
Yufit
,
M. A.
Hashim
,
M. A.
Hussain
,
C. T. J.
Low
, and
P. V.
Aravind
, “
Application of carbon materials in redox flow batteries
,”
J. Power Sources
253
,
150
166
(
2014
).
142.
H.
Lee
,
H.
Kim
, and
H.
Kim
, “
Application of carbon felt as a flow distributor for polymer electrolyte membrane fuel cells
,”
J. Electrochem. Soc.
166
,
F74
F78
(
2019
).
143.
S.
Maurya
,
P. T.
Nguyen
,
Y. S.
Kim
,
Q. J.
Kang
, and
R.
Mukundan
, “
Effect of flow field geometry on operating current density, capacity and performance of vanadium redox flow battery
,”
J. Power Sources
404
,
20
27
(
2018
).
144.
Z.
Chen
,
W.
Ren
,
L.
Gao
,
B.
Liu
,
S.
Pei
, and
H. M.
Cheng
, “
Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition
,”
Nat. Mater.
10
,
424
428
(
2011
).
145.
J. E.
Park
,
J.
Lim
,
S.
Kim
,
I.
Choi
,
C.-Y.
Ahn
,
W.
Hwang
,
M. S.
Lim
,
Y.-H.
Cho
, and
Y.-E.
Sung
, “
Enhancement of mass transport in fuel cells using three-dimensional graphene foam as flow field
,”
Electrochim. Acta
265
,
488
496
(
2018
).
146.
J. E.
Park
,
J.
Lim
,
M. S.
Lim
,
S.
Kim
,
O.-H.
Kim
,
D. W.
Lee
,
J. H.
Lee
,
Y.-H.
Cho
, and
Y.-E.
Sung
, “
Gas diffusion layer/flow-field unified membrane-electrode assembly in fuel cell using graphene foam
,”
Electrochim. Acta
323
,
134808
(
2019
).
147.
H.
Lin
,
S.
Xu
,
X.
Wang
, and
N.
Mei
, “
Significantly reduced thermal diffusivity of free-standing two-layer graphene in graphene foam
,”
Nanotechnology
24
,
415706
(
2013
).
148.
K.
Jiao
,
J.
Xuan
,
Q.
Du
,
Z.
Bao
,
B.
Xie
,
B.
Wang
,
Y.
Zhao
,
L.
Fan
,
H.
Wang
,
Z.
Hou
,
S.
Huo
,
N. P.
Brandon
,
Y.
Yin
, and
M. D.
Guiver
, “
Designing the next generation of proton-exchange membrane fuel cells
,”
Nature
595
,
361
369
(
2021
).
149.
S.
Shimpalee
and
J.
Vanzee
, “
Numerical studies on rib & channel dimension of flow-field on PEMFC performance
,”
Int. J. Hydrogen Energy
32
,
842
856
(
2007
).
150.
A. P.
Manso
,
F. F.
Marzo
,
M. G.
Mujika
,
J.
Barranco
, and
A.
Lorenzo
, “
Numerical analysis of the influence of the channel cross-section aspect ratio on the performance of a PEM fuel cell with serpentine flow field design
,”
Int. J. Hydrogen Energy
36
,
6795
6808
(
2011
).
151.
M.
Muthukumar
,
P.
Karthikeyan
,
M.
Vairavel
,
C.
Loganathan
,
S.
Praveenkumar
, and
A. P. S.
Kumar
, “
Numerical studies on PEM fuel cell with different landing to channel width of flow channel
,”
Procedia Eng.
97
,
1534
1542
(
2014
).
152.
K.-S.
Choi
,
H.-M.
Kim
, and
S.-M.
Moon
, “
Numerical studies on the geometrical characterization of serpentine flow-field for efficient PEMFC
,”
Int. J. Hydrogen Energy
36
,
1613
1627
(
2011
).
153.
J.
Wu
,
X. Z.
Yuan
,
J. J.
Martin
,
H.
Wang
,
J.
Zhang
,
J.
Shen
,
S.
Wu
, and
W.
Merida
, “
A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies
,”
J. Power Sources
184
,
104
119
(
2008
).
154.
H.
Tawfik
,
Y.
Hung
, and
D.
Mahajan
, “
Metal bipolar plates for PEM fuel cell—A review
,”
J. Power Sources
163
,
755
767
(
2007
).
155.
A.
Albarbar
and
M.
Alrweq
, “
Proton exchange membrane fuel cells: Review
,” in
Proton Exchange Membrane Fuel Cells
(
Springer
,
2018
), pp.
9
29
.
156.
B.-T.
Tsai
,
C.-J.
Tseng
,
Z.-S.
Liu
,
C.-H.
Wang
,
C.-I.
Lee
,
C.-C.
Yang
, and
S.-K.
Lo
, “
Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor
,”
Int. J. Hydrogen Energy
37
,
13060
13066
(
2012
).
157.
A.
Fly
,
D.
Butcher
,
Q.
Meyer
,
M.
Whiteley
,
A.
Spencer
,
C.
Kim
,
P. R.
Shearing
,
D. J. L.
Brett
, and
R.
Chen
, “
Characterisation of the diffusion properties of metal foam hybrid flow-fields for fuel cells using optical flow visualisation and x-ray computed tomography
,”
J. Power Sources
395
,
171
178
(
2018
).
158.
T.
Wilberforce
,
F. N.
Khatib
,
O. S.
Ijaodola
,
E.
Ogungbemi
,
Z.
El-Hassan
,
A.
Durrant
,
J.
Thompson
, and
A. G.
Olabi
, “
Numerical modelling and CFD simulation of a polymer electrolyte membrane (PEM) fuel cell flow channel using an open pore cellular foam material
,”
Sci. Total Environ.
678
,
728
740
(
2019
).
You do not currently have access to this content.