Ocean thermal energy conversion is one of the important ways to utilize low-grade ocean thermal energy. The main reasons for its low economic feasibility include high cost, small temperature difference, low energy efficiency, and high consumption of deep-sea cold energy extraction pumps. Some new means to improve the thermal energy grade may be beneficial to improve the economic feasibility of ocean thermal energy conversion, desalination, and other systems. The research progress and analysis results of ways to obtain low-grade thermal energy in the ocean surface by using solar energy, offshore platform waste heat, compressed air storage waste heat, and other methods show that (1) after using solar energy or waste heat to raise sea water temperature, shallow seawater can be used as the cold source, which can reduce most of the pump consumption and expensive riser cost of lifting cold seawater. This way improves the net power generation efficiency more significantly than improving the circulation mode and working medium and also significantly improves the economic feasibility. (2) Exhaust waste heat from offshore platform diesel power generation and compressed air energy storage power generation systems can be used to obtain a larger temperature difference between cold and hot seawater and further improve the efficiency of thermal power generation. (3) The low density of solar energy flow at the sea level leads to the high cost of offshore platforms. Incorporating ocean thermal energy conversion systems into floating photovoltaic power generation, seawater desalination and other systems can reduce the cost of offshore platforms.

1.
D.
Tanner
, “
Ocean thermal energy conversion: Current overview and future outlook
,”
Renewable Energy
6
(
3
),
367
373
(
1995
).
2.
N.
Khan
,
A.
Kalair
,
N.
Abas
, and
A.
Haider
, “Review of ocean tidal, wave and thermal energy technologies,”
Renewable Sustainable Energy Rev.
72
,
590
604
(
2017
).
3.
H.
Uehara
and
Y.
Ikegami
, “
Optimization of a closed-cycle OTEC system
,”
J. Sol. Energy Eng.
112
(
4
),
247
256
(
1990
).
4.
S. M.
Abbas
,
H. D. S.
Alhassany
,
D.
Vera
 et al, “
Review of enhancement for ocean thermal energy conversion system
,”
J. Ocean Eng. Sci.
(published online
2022
).
5.
B. F.
Tchanche
,
G.
Papadakis
,
G.
Lambrinos
 et al, “
Fluid selection for a low-temperature solar organic Rankine cycle
,”
Appl. Therm. Eng.
29
(
11–12
),
2468
2476
(
2009
).
6.
M.
Wang
,
J.
Wang
,
Y.
Zhao
 et al, “
Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors
,”
Appl. Therm. Eng.
50
(
1
),
816
825
(
2013
).
7.
A.
Saxena
,
E.
Cuce
,
D.
Bandhu Singh
 et al, “
A thermodynamic review on solar ponds
,”
Sol. Energy
242
,
335
363
(
2022
).
8.
A.
Kasaeian
,
S.
Sharifi
, and
W.-M.
Yan
, “
Novel achievements in the development of solar ponds: A review
,”
Sol. Energy
174
,
189
206
(
2018
).
9.
S.
Masoud Parsa
,
M.
Majidniya
,
W. H.
Alawee
 et al, “
Thermodynamic, economic, and sensitivity analysis of salt gradient solar pond (SGSP) integrated with a low-temperature multi effect desalination (MED): Case study, Iran
,”
Sustainable Energy Technol. Assess.
47
,
101478
(
2021
).
10.
M.
Mazidi
,
M. H.
Shojaeefard
,
M. S.
Mazidi
 et al, “
Two-dimensional modeling of a salt-gradient solar pond with wall shading effect and thermo-physical properties dependent on temperature and concentration
,”
J. Therm. Sci.
20
(
4
),
362
370
(
2011
).
11.
M.
Husain
,
P. S.
Patil
,
S. R.
Patil
 et al, “
Optimum size of non-convective zone for improved thermal performance of salt gradient solar pond
,”
Sol. Energy
74
(
5
),
429
436
(
2003
).
12.
A.
Saleh
,
J. A.
Qudeiri
, and
M. A.
Al-Nimr
, “
Performance investigation of a salt gradient solar pond coupled with desalination facility near the Dead Sea
,”
Energy
36
(
2
),
922
931
(
2011
).
13.
M. D. A.
Al-Nimr
,
A. I.
Dawahdeh
, and
H. A.
Ali
, “
Power generation by integrating a thermally regenerative electrochemical cycle (TREC) with a solar pond and underground heat exchanger
,”
Renewable Energy
189
,
663
675
(
2022
).
14.
K.
Nakoa
,
K.
Rahaoui
,
A.
Date
 et al, “
An experimental review on coupling of solar pond with membrane distillation
,”
Sol. Energy
119
,
319
331
(
2015
).
15.
K. R.
Agha
, “
The thermal characteristics and economic analysis of a solar pond coupled low temperature multi stage desalination plant
,”
Sol. Energy
83
(
4
),
501
510
(
2009
).
16.
A. H.
Sayer
,
H.
Al-Hussaini
, and
A. N.
Campbell
, “
New theoretical modelling of heat transfer in solar ponds
,”
Sol. Energy
125
,
207
218
(
2016
).
17.
A. H.
Sayer
,
H.
Al-Hussaini
, and
A. N.
Campbell
, “
New comprehensive investigation on the feasibility of the gel solar pond, and a comparison with the salinity gradient solar pond
,”
Appl. Therm. Eng.
130
,
672
683
(
2018
).
18.
A. A.
El-Sebaii
,
M. R. I.
Ramadan
,
S.
Aboul-Enein
 et al, “
History of the solar ponds: A review study
,”
Renewable Sustainable Energy Rev.
15
(
6
),
3319
3325
(
2011
).
19.
K. R.
Ranjan
and
S. C.
Kaushik
, “
Thermodynamic and economic feasibility of solar ponds for various thermal applications: A comprehensive review
,”
Renewable Sustainable Energy Rev.
32
,
123
139
(
2014
).
20.
F.
Suárez
,
S. W.
Tyler
, and
A. E.
Childress
, “
A theoretical study of a direct contact membrane distillation system coupled to a salt-gradient solar pond for terminal lakes reclamation
,”
Water Res.
44
(
15
),
4601
4615
(
2010
).
21.
F.
Suárez
,
J. A.
Ruskowitz
,
S. W.
Tyler
 et al, “
Renewable water: Direct contact membrane distillation coupled with solar ponds
,”
Appl. Energy
158
,
532
539
(
2015
).
22.
J.-P.
Mericq
,
S.
Laborie
, and
C.
Cabassud
, “
Evaluation of systems coupling vacuum membrane distillation and solar energy for seawater desalination
,”
Chem. Eng. J.
166
(
2
),
596
606
(
2011
).
23.
P. J. T.
Straatman
and
W. G. J. H. M.
Van Sark
, “
A new hybrid ocean thermal energy conversion–Offshore solar pond (OTEC–OSP) design: A cost optimization approach
,”
Sol. Energy
82
(
6
),
520
527
(
2008
).
24.
S. A.
Kalogirou
, “
Solar thermal collectors and applications
,”
Prog. Energy Combust. Sci.
30
(
3
),
231
295
(
2004
).
25.
A. K.
Tiwari
,
S.
Gupta
,
A. K.
Joshi
 et al, “
TRNSYS simulation of flat plate solar collector based water heating system in Indian climatic condition
,”
Mater. Today: Proc.
46
,
5360
5365
(
2021
).
26.
S.
Khanmohammadi
,
P.
Heidarnejad
,
N.
Javani
 et al, “
Exergoeconomic analysis and multi objective optimization of a solar based integrated energy system for hydrogen production
,”
Int. J. Hydrogen Energy
42
(
33
),
21443
21453
(
2017
).
27.
L. M.
Ayompe
,
A.
Duffy
,
M.
Mc Keever
 et al, “
Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate
,”
Energy
36
(
5
),
3370
3378
(
2011
).
28.
A.
Kumar
,
Z.
Said
, and
E.
Bellos
, “
An up-to-date review on evacuated tube solar collectors
,”
J. Therm. Anal. Calorim.
145
(
6
),
2873
2889
(
2021
).
29.
N.
Yamada
,
A.
Hoshi
, and
Y.
Ikegami
, “
Performance simulation of solar-boosted ocean thermal energy conversion plant
,”
Renewable Energy
34
(
7
),
1752
1758
(
2009
).
30.
K.
Chopra
,
V. V.
Tyagi
,
A. K.
Pandey
 et al, “
Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications
,”
Appl. Energy
228
,
351
389
(
2018
).
31.
A. A.
Mathew
and
V.
Thangavel
, “
A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation
,”
Renewable Energy
179
,
1674
1693
(
2021
).
32.
N.
Zhou
,
X.
Wang
,
Z.
Chen
 et al, “
Experimental study on organic Rankine cycle for waste heat recovery from low-temperature flue gas
,”
Energy
55
,
216
225
(
2013
).
33.
O.
Behar
,
A.
Khellaf
, and
K.
Mohammedi
, “
A review of studies on central receiver solar thermal power plants
,”
Renewable Sustainable Energy Rev.
23
,
12
39
(
2013
).
34.
M.
Tian
,
Y.
Su
,
H.
Zheng
 et al, “
A review on the recent research progress in the compound parabolic concentrator (CPC) for solar energy applications
,”
Renewable Sustainable Energy Rev.
82
,
1272
1296
(
2018
).
35.
J.
Sun
,
Z.
Zhang
,
L.
Wang
 et al, “
Comprehensive review of line-focus concentrating solar thermal technologies: Parabolic trough collector (PTC) vs linear Fresnel reflector (LFR)
,”
J. Therm. Sci.
29
(
5
),
1097
1124
(
2020
).
36.
O. A.
Hamed
,
H.
Kosaka
,
K. H.
Bamardouf
 et al, “
Concentrating solar power for seawater thermal desalination
,”
Desalination
396
,
70
78
(
2016
).
37.
S.
Kalogirou
,
S.
Lloyd
, and
J.
Ward
, “
Modelling, optimisation and performance evaluation of a parabolic trough solar collector steam generation system
,”
Sol. Energy
60
(
1
),
49
59
(
1997
).
38.
S.
Kalogirou
, “
Use of parabolic trough solar energy collectors for sea-water desalination
,”
Appl. Energy
60
(
2
),
65
88
(
1998
).
39.
M. S.
Büker
,
H.
ParlamıŞ
,
M.
Alwetaishi
 et al, “
Experimental investigation on the dehumidification performance of a parabolic trough solar air collector assisted rotary desiccant system
,”
Case Stud. Therm. Eng.
34
,
102077
(
2022
).
40.
A. K.
Thakur
,
R.
Sathyamurthy
,
R.
Velraj
 et al, “
Sea-water desalination using a desalting unit integrated with a parabolic trough collector and activated carbon pellets as energy storage medium
,”
Desalination
516
,
115217
(
2021
).
41.
C.
You
,
W.
Zhang
, and
Z.
Yin
, “
Modeling of fluid flow and heat transfer in a trough solar collector
,”
Appl. Therm. Eng.
54
(
1
),
247
254
(
2013
).
42.
T.
Arunkumar
,
R.
Velraj
,
D. C.
Denkenberger
 et al, “
Productivity enhancements of compound parabolic concentrator tubular solar stills
,”
Renewable Energy
88
,
391
400
(
2016
).
43.
Y.
Wang
, “
Sub-atmospheric pressure desalination system powered by solar compound parabolic concentration
,” Ph.D. thesis (
Yunnan Normal University
,
2021
).
44.
V. K.
Jebasingh
and
G. M. J.
Herbert
, “
A review of solar parabolic trough collector
,”
Renewable Sustainable Energy Rev.
54
,
1085
1091
(
2016
).
45.
E.
Bellos
, “
Progress in the design and the applications of linear Fresnel reflectors: A critical review
,”
Therm. Sci. Eng. Prog.
10
,
112
137
(
2019
).
46.
X.
Tian
,
X.
Sun
,
G.
Liu
 et al, “
Multi-objective optimization of the hull form for the semi-submersible medical platform
,”
Ocean Eng.
230
,
109038
(
2021
).
47.
H.-X.
Luo
, “
Study on hydrodynamic performance and mooring system of semi-submersible platform,
” Ph.D. thesis (
Huazhong University of Science and Technology
,
2017
).
48.
W.
Yue
,
W.
Wang
,
S.
Sheng
 et al, “
Analysis of the wave load and dynamic response of a new semi-submersible wave-energy-powered aquaculture platform
,”
Ocean Eng.
248
,
110346
(
2022
).
49.
H.
Wei
,
L.
Xiao
,
M.
Liu
 et al, “
Vulnerability criterion of nonlinear coupled resonance for semi-submersible platform using classification algorithm
,”
Mar. Struct.
83
,
103183
(
2022
).
50.
H.
Zhang
,
L.
Li
,
B.
Jiang
 et al, “
Highly thermally insulated and superhydrophilic corn straw for efficient solar vapor generation
,”
ACS Appl. Mater. Interfaces
12
(
14
),
16503
16511
(
2020
).
51.
X.
Hou
,
R.
Zhang
, and
D.
Fang
, “
Flexible MCNTs cross-linked polyimide membranes with high light absorbance and hierarchical pore distribution for photo-thermal conversion in solar water evaporation
,”
Carbon
187
,
310
320
(
2022
).
52.
M.
He
,
M. K.
Alam
,
H.
Liu
 et al, “
Textile waste derived cellulose based composite aerogel for efficient solar steam generation
,”
Compos. Commun.
28
,
100936
(
2021
).
53.
H. M.
Wilson
,
D. J.
Ahirrao
,
S.
Raheman Ar
 et al, “
Biomass-derived porous carbon for excellent low intensity solar steam generation and seawater desalination
,”
Sol. Energy Mater. Sol. Cells
215
,
110604
(
2020
).
54.
J.
Feng
,
B.
Bai
,
L.
Yang
 et al, “
Low-cost and facile hydrophilic amplification of raw corn straws for the applications of highly efficient interfacial solar steam generation
,”
Mater. Chem. Phys.
271
,
124904
(
2021
).
55.
N.
Hu
,
Y.
Xu
,
Z.
Liu
 et al, “
Double-layer cellulose hydrogel solar steam generation for high-efficiency desalination
,”
Carbohydr. Polym.
243
,
116480
(
2020
).
56.
H. G.
Teo
,
P. S.
Lee
, and
M. N. A.
Hawlader
, “
An active cooling system for photovoltaic modules
,”
Appl. Energy
90
(
1
),
309
315
(
2012
).
57.
J.
Siecker
,
K.
Kusakana
, and
B. P.
Numbi
, “
A review of solar photovoltaic systems cooling technologies
,”
Renewable Sustainable Energy Rev.
79
,
192
203
(
2017
).
58.
M.
Thirugnanasambandam
,
S.
Iniyan
, and
R.
Goic
, “
A review of solar thermal technologies
,”
Renewable Sustainable Energy Rev.
14
(
1
),
312
322
(
2010
).
59.
M.
Chandrasekar
and
T.
Senthilkumar
, “
Five decades of evolution of solar photovoltaic thermal (PVT) technology: A critical insight on review articles
,”
J. Cleaner Prod.
322
,
128997
(
2021
).
60.
F. A.
Sachit
,
N.
Tamaldin
, and
M. A. M.
Rosli
, “
Current progress on flat-plate water collector design in photovoltaic thermal (PV/T) systems: A review
,”
J. Adv. Res. Dyn. Control Syst.
10
(
04
),
680
(
2018
).
61.
V. V.
Tyagi
,
S. C.
Kaushik
, and
S. K.
Tyagi
, “
Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology
,”
Renewable Sustainable Energy Rev.
16
(
3
),
1383
1398
(
2012
).
62.
M. Y.
Othman
,
A.
Ibrahim
,
G. L.
Jin
 et al, “
Photovoltaic-thermal (PV/T) technology: The future energy technology
,”
Renewable Energy
49
,
171
174
(
2013
).
63.
P.
Valeh-E-Sheyda
,
M.
Rahimi
,
A.
Parsamoghadam
 et al, “
Using a wind-driven ventilator to enhance a photovoltaic cell power generation
,”
Energy Build.
73
,
115
119
(
2014
).
64.
G. S.
Menon
,
S.
Murali
,
J.
Elias
 et al, “
Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium
,”
Renewable Energy
188
,
986
996
(
2022
).
65.
F.
Chen
and
H.
Yin
, “
Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel
,”
Appl. Energy
177
,
271
284
(
2016
).
66.
P.
Gang
,
F.
Huide
,
Z.
Tao
 et al, “
A numerical and experimental study on a heat pipe PV/T system
,”
Sol. Energy
85
(
5
),
911
921
(
2011
).
67.
P.
Gang
,
F.
Huide
,
Z.
Huijuan
 et al, “
Performance study and parametric analysis of a novel heat pipe PV/T system
,”
Energy
37
(
1
),
384
395
(
2012
).
68.
G.
Li
,
G.
Pei
,
J.
Ji
 et al, “
Numerical and experimental study on a PV/T system with static miniature solar concentrator
,”
Sol. Energy
120
,
565
574
(
2015
).
69.
J.
Ji
,
J.-P.
Lu
,
T.-T.
Chow
 et al, “
A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation
,”
Appl. Energy
84
(
2
),
222
237
(
2007
).
70.
A. L.
Abdullah
,
S.
Misha
,
N.
Tamaldin
 et al, “
Theoretical study and indoor experimental validation of performance of the new photovoltaic thermal solar collector (PVT) based water system
,”
Case Stud. Therm. Eng.
18
,
100595
(
2020
).
71.
S.
Dubey
and
A. A. O.
Tay
, “
Testing of two different types of photovoltaic–thermal (PVT) modules with heat flow pattern under tropical climatic conditions
,”
Energy Sustainable Dev.
17
(
1
),
1
12
(
2013
).
72.
D.
Zhang
, see https://mp.weixin.qq.com/s/QMuCeEp9Nfq4oUkYtOeNsQ for “
International Development Trends of Offshore PV
” (last accessed August 01, 2022).
73.
EAOs Province
, see http://nyj.shandong.gov.cn/art/2022/7/12/art_253733_10293053.html for “
To Provide Solid Support for the Province's Energy Supply and Clean and Low-Carbon Transformation
” (last accessed August 1, 2022).
74.
China Weather
, see http://www.weather.com.cn/hainan/qxjjj/03/341906.shtml for “
Climate of Hainan
” (last accessed March 30, 2022).
75.
A.
Borsukiewicz-Gozdur
, “
Experimental investigation of R227ea applied as working fluid in the ORC power plant with hermetic turbogenerator
,”
Appl. Therm. Eng.
56
(
1
),
126
133
(
2013
).
76.
J.
A.
Duffie
and
W. A.
Beckmann
, “
Flat-plate collectors
,” in
Solar Engineering of Thermal Processes
, 4th ed. (
Wiley
,
2013
), pp.
236
321
.
77.
S. M.
Tabarhoseini
,
M.
Sheikholeslami
, and
Z.
Said
, “
Recent advances on the evacuated tube solar collector scrutinizing latest innovations in thermal performance improvement involving economic and environmental analysis
,”
Sol. Energy Mater. Sol. Cells
241
,
111733
(
2022
).
78.
W.
Liu
,
X.
Xu
,
F.
Chen
 et al, “
A review of research on the closed thermodynamic cycles of ocean thermal energy conversion
,”
Renewable Sustainable Energy Rev.
119
,
109581
(
2020
).
79.
L. C.
Trimble
and
W. L.
Owens
, “
Review of mini-OTEC performance
,” in
Energy to the 21st Century, Proceedings of the Fifteenth Intersociety Energy Conversion Engineering Conference
, January 01 (
1980
).
80.
A.
Giostri
,
A.
Romei
, and
M.
Binotti
, “
Off-design performance of closed OTEC cycles for power generation
,”
Renewable Energy
170
,
1353
1366
(
2021
).
81.
H.
Aydin
,
H.-S.
Lee
,
H.-J.
Kim
 et al, “
Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating
,”
Renewable Energy
72
,
154
163
(
2014
).
82.
D.
Baidya
,
M. A.
Rodrigues De Brito
,
A. P.
Sasmito
 et al, “
Diesel generator exhaust heat recovery fully-coupled with intake air heating for off-grid mining operations: An experimental, numerical, and analytical evaluation
,”
Int. J. Min. Sci. Technol.
32
(
1
),
155
169
(
2022
).
83.
D.
Baidya
,
M. A. R.
De BRITO
,
A. P.
Sasmito
 et al, “
Recovering waste heat from diesel generator exhaust; an opportunity for combined heat and power generation in remote Canadian mines
,”
J. Cleaner Prod.
225
,
785
805
(
2019
).
84.
M. E.
Demir
and
F.
Çıtakoğlu
, “
Design and modeling of a multigeneration system driven by waste heat of a marine diesel engine
,”
Int. J. Hydrogen Energy
47
,
40513
(
2022
).
85.
Z.
Wang
,
X.
Mo
,
P.
Qin
 et al, “
Multi-dimensional assessment and multi-objective optimization of electricity-cooling cogeneration system driven by marine diesel engine waste heat
,”
J. Cleaner Prod.
334
,
130187
(
2022
).
86.
C.-Y.
Pu
, “
Efficiency optimization system of waste heat power generation of marine diesel engine
,”
Ship Sci. Technol.
42
(
02
),
82
84
(
2020
).
87.
N.
Niu
,
X.-G.
Yang
,
S.-L.
Wu
 et al, “
Waste heat utilization and influencing factors of marine diesel engine based on fin thermoelectric module
,”
Ship Eng.
41
(
06
),
106
110
(
2019
).
88.
R.
Kuang
,
N.
Huang
,
G.
Chen
 et al, “
Numerical analysis of discharging stability of basalt fiber bundle thermal energy storage tank
,”
Energy Rep.
8
,
13014
13022
(
2022
).
89.
R.
Kuang
,
Y.
Liu
,
T.
An
 et al, “
Numerical analysis of oxidation performance of basalt fiber bundle thermal flow-reversal reactor
,”
Appl. Therm. Eng.
215
,
118886
(
2022
).
90.
D. K.
Kreid
, “
Technical and economic feasibility analysis of the no-fuel compressed air energy storage concept
,” Technical Report No. BNWL-2065 (
Battelle Pacific Northwest Labs
.,
Richland
,
1976
).
91.
M.
Soltani
,
F.
Moradi Kashkooli
,
H.
Jafarizadeh
 et al, “
Diabatic compressed air energy storage (CAES) systems: State of the art
,” in
Encyclopedia of Energy Storage
, edited by
L. F.
Cabeza
(
Elsevier
,
Oxford
,
2022
), pp.
173
187
.
92.
P. Y.
Li
, “
Isothermal compressed air energy storage (i-CAES) system
,” in
Encyclopedia of Energy Storage
, edited by
L. F.
Cabeza
(
Elsevier
,
Oxford
,
2022
), pp.
204
217
.
93.
C.
Jie
,
Configuration and Optimization of a Novel Compressed-Air-Assisted Wind Energy Conversion System
(
The University of Nebraska-Lincoln
,
2016
).
94.
P. Y.
Li
,
E.
Loth
,
T. W.
Simon
 et al, “
Compressed air energy storage for offshore wind turbines
,” in
Proceedings of International Fluid Power Exhibition (IFPE)
, Las Vegas (
2011
).
95.
Z.
Liu
,
X.
Liu
,
S.
Yang
 et al, “
Assessment evaluation of a trigeneration system incorporated with an underwater compressed air energy storage
,”
Appl. Energy
303
,
117648
(
2021
).
96.
A.
Sciacovelli
,
Y.
Li
,
H.
Chen
 et al, “
Dynamic simulation of adiabatic compressed air energy storage (A-CAES) plant with integrated thermal storage: Link between components performance and plant performance
,”
Appl. Energy
185
,
16
28
(
2017
).
97.
X.
She
,
X.
Peng
,
B.
Nie
 et al, “
Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression
,”
Appl. Energy
206
,
1632
1642
(
2017
).
98.
I.
Ortega-Fernández
,
A.
Zavattoni S
,
J.
Rodríguez-aseguinolaza
 et al, “
Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology
,”
Appl. Energy
205
,
280
293
(
2017
).
99.
W.
Ji
,
Y.
Zhou
,
Y.
Sun
 et al, “
Thermodynamic analysis of a novel hybrid wind-solar-compressed air energy storage system
,”
Energy Convers. Manage.
142
,
176
187
(
2017
).
100.
Z.
Liu
,
X.
Yang
,
X.
Liu
 et al, “
Evaluation of a trigeneration system based on adiabatic compressed air energy storage and absorption heat pump: Thermodynamic analysis
,”
Appl. Energy
300
,
117356
(
2021
).
101.
J.-L.
Liu
and
J.-H.
Wang
, “
A comparative research of two adiabatic compressed air energy storage systems
,”
Energy Convers. Manage.
108
,
566
578
(
2016
).
102.
L.
Zhang
,
L.
Liu
,
C.
Zhang
 et al, “
Performance analysis of an adiabatic compressed air energy storage system with a pressure regulation inverter-driven compressor
,”
J. Energy Storage
43
,
103197
(
2021
).
103.
Y.
Zhang
,
E.
Yao
, and
T.
Wang
, “
Comparative analysis of compressed carbon dioxide energy storage system and compressed air energy storage system under low-temperature conditions based on conventional and advanced exergy methods
,”
J. Energy Storage
35
,
102274
(
2021
).
104.
Z.
Guo
,
G.
Deng
,
Y.
Fan
 et al, “
Performance optimization of adiabatic compressed air energy storage with ejector technology
,”
Appl. Therm. Eng.
94
,
193
197
(
2016
).
105.
N.
Courtois
,
M.
Najafiyazdi
,
R.
Lotfalian
 et al, “
Analytical expression for the evaluation of multi-stage adiabatic-compressed air energy storage (A-CAES) systems cycle efficiency
,”
Appl. Energy
288
,
116592
(
2021
).
106.
Z.
Wang
,
W.
Xiong
,
D. S. K.
Ting
 et al, “
Comparison of underwater and underground CAES systems for integrating floating offshore wind farms
,”
J. Energy Storage
14
,
276
282
(
2017
).
107.
X.
Luo
,
J.
Wang
,
C.
Krupke
 et al, “
Modelling study, efficiency analysis and optimisation of large-scale adiabatic compressed air energy storage systems with low-temperature thermal storage
,”
Appl. Energy
162
,
589
600
(
2016
).
108.
N.
Ravichandran
,
N.
Ravichandran
, and
B.
Panneerselvam
, “
Comparative assessment of offshore floating photovoltaic systems using thin film modules for Maldives islands
,”
Sustainable Energy Technol. Assess.
53
,
102490
(
2022
).
109.
X.
Liu
,
W.
Chen
,
M.
Gu
 et al, “
Thermal and economic analyses of solar desalination system with evacuated tube collectors
,”
Sol. Energy
93
,
144
150
(
2013
).
110.
M. R.
Dhanak
and
N. I.
Xiros
,
Springer Handbook of Ocean Engineering
(
Springer
,
2016
).
111.
National Energy Administration
, see http://www.nea.gov.cn/2022-01/14/c_1310424510.htm for “
Promote Energy Transformation and Enable Green Development
” (last accessed March 5, 2022).
112.
H.-H.
Hu
,
Study on New Model and Benefit of Floating Photovoltaic Power Station in Arid Area
(
Xinjiang Agricultural University
,
2020
).
113.
T.
Plocek
,
M.
Laboy
, and
J.
Marti
, “
Ocean thermal energy conversion (OTEC): Technical viability, cost projections and development strategies
,” in
Offshore Technology Conference
(
OnePetro
,
2009
).
You do not currently have access to this content.