In this paper, we propose a procedure for quantifying and reducing uncertainties that impact numerical simulations involved in the estimation of the fatigue of a wind turbine structure. The present study generalizes a previous work carried out by the authors proposing to quantify and to reduce uncertainties that affect the properties of a wind turbine model by combining a global sensitivity analysis and a recursive Bayesian filtering approach. We extend the procedure to include the uncertainties involved in the modeling of a synthetic wind field. Unlike the model properties having a static or slow time-variant behavior, the parameters related to the external solicitation have a non-explicit dynamic behavior, which must be taken into account during the recursive inference. A non-parametric data-driven approach to approximate the non-explicit dynamic of the inflow related parameters is used. More precisely, we focus on data assimilation methods combining a nearest neighbor or an analog sampler with a stochastic filtering method such as the ensemble Kalman filter. The so-called data-driven data assimilation approach is used to recursively reduce the uncertainties that affect the parameters related to both model properties and wind field. For the approximation of the non-explicit dynamic of the wind inflow related parameters, in situ observations obtained from a light detection and ranging system and a cup-anemometer device are used. For the data-assimilation procedure, synthetic data simulated from the aero-servo-elastic numerical model are considered. The next investigations will be to verify the procedure with real in situ data.

1.
Aanonsen
,
S. I.
,
Nævdal
,
G.
,
Oliver
,
D. S.
,
Reynolds
,
A. C.
,
Vallès
,
B.
 et al., “
The ensemble Kalman filter in reservoir engineering: A review
,”
SPE J.
14
,
393
412
(
2009
).
2.
Alexander
,
R.
,
Zhao
,
Z.
,
Székely
,
E.
, and
Giannakis
,
D.
, “
Kernel analog forecasting of tropical intraseasonal oscillations
,”
J. Atmos. Sci.
74
,
1321
1342
(
2017
).
3.
Ayet
,
A.
and
Tandeo
,
P.
, “
Nowcasting solar irradiance using an analog method and geostationary satellite images
,”
Sol. Energy
164
,
301
315
(
2018
).
4.
Bertino
,
L.
,
Evensen
,
G.
, and
Wackernagel
,
H.
, “
Sequential data assimilation techniques in oceanography
,”
Int. Stat. Rev.
71
,
223
241
(
2003
).
5.
Bocquet
,
M.
,
Farchi
,
A.
, and
Malartic
,
Q.
, “
Online learning of both state and dynamics using ensemble Kalman filters
,” arXiv:2006.03859 (
2020
).
6.
Brown
,
S. D.
, “
The Kalman filter in analytical chemistry
,”
Anal. Chim. Acta
181
,
1
26
(
1986
).
7.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci.
113
,
3932
3937
(
2016
).
8.
Chau
,
T. T. T.
,
Ailliot
,
P.
, and
Monbet
,
V.
, “
An algorithm for non-parametric estimation in state–space models
,”
Comput. Stat. Data Anal.
153
,
107062
(
2021
).
9.
Chen
,
L.
, “
Curse of dimensionality
,” in
Encyclopedia of Database Systems
, edited by
L.
Liu
and
M. T.
Özsu
(
Springer US
,
Boston, MA
,
2009
), pp.
545
546
.
10.
Damblin
,
G.
,
Couplet
,
M.
, and
Iooss
,
B.
, “
Numerical studies of space-filling designs: Optimization of Latin Hypercube Samples and subprojection properties
,”
J. Simul.
7
,
276
289
(
2013
).
11.
Dimitrov
,
N.
,
Natarajan
,
A.
, and
Kelly
,
M.
, “
Model of wind shear conditional on turbulence and its impact on wind turbine loads
,”
Wind Energy
18
,
1917
1931
(
2015
).
12.
Dimitrov
,
N.
,
Natarajan
,
A.
, and
Mann
,
J.
, “
Effects of normal and extreme turbulence spectral parameters on wind turbine loads
,”
Renewable Energy
101
,
1180
1193
(
2017
).
13.
Dobre
,
S.
,
Bastogne
,
T.
,
Profeta
,
C.
,
Barberi-Heyob
,
M.
, and
Richard
,
A.
, “
Limits of variance-based sensitivity analysis for non-identifiability testing in high dimensional dynamic models
,”
Automatica
48
,
2740
2749
(
2012
).
14.
Durbin
,
J.
and
Koopman
,
S. J.
,
Time Series Analysis by State Space Methods
(
Oxford University Press
,
2012
).
15.
Efron
,
B.
, “
Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods
,”
Biometrika
68
,
589
599
(
1981
).
16.
Evensen
,
G.
, “
Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
,”
J. Geophys. Res.: Oceans
99
,
10143
10162
, (
1994
).
17.
Evensen
,
G.
, “
The ensemble Kalman filter: Theoretical formulation and practical implementation
,”
Ocean Dyn.
53
,
343
367
(
2003
).
18.
Evensen
,
G.
,
Data Assimilation: The Ensemble Kalman Filter
(
Springer Science and Business Media
,
2009
).
19.
Fablet
,
R.
,
Viet
,
P.
,
Lguensat
,
R.
, and
Chapron
,
B.
, “
Data-driven assimilation of irregularly-sampled image time series
,” in
2017 IEEE International Conference on Image Processing (ICIP)
(
IEEE
,
2017
), pp.
4302
4306
.
20.
Friedman
,
J. H.
, “
On bias, variance, 0/1-loss, and the curse-of-dimensionality
,”
Data Mining Knowl. Discovery
1
,
55
77
(
1997
).
21.
Ginsbourger
,
D.
,
Picheny
,
V.
,
Roustant
,
O.
, and
Richet
,
Y.
, “
Kriging with heterogeneous nugget effect for the approximation of noisy simulators with tunable fidelity (krigeage avec effet de pépite hétérogène pour l'approximation de simulateurs bruités fidélité réglable)
,” in 
Proceedings of Joint Meeting of the Statistical Society of Canada and the Société Francaise de Statistique
(
2008
).
22.
Hamilton
,
F.
,
Berry
,
T.
, and
Sauer
,
T.
, “
Ensemble Kalman filtering without a model
,”
Phys. Rev. X
6
,
011021
(
2016
).
23.
Hansen
,
M.
,
Aerodynamics of Wind Turbines
(
Routledge
,
2015
).
24.
Harvey
,
A. C.
,
Forecasting, Structural Time Series Models and the Kalman Filter
(
Cambridge University Press
,
1990
).
25.
Haykin
,
S.
,
Kalman Filtering and Neural Networks
(
John Wiley & Sons
,
2004
), Vol.
47
.
26.
Hirvoas
,
A.
,
Prieur
,
C.
,
Arnaud
,
E.
,
Caleyron
,
F.
, and
Munoz Zuniga
,
M.
, “
Quantification and reduction of uncertainties in a wind turbine numerical model based on a global sensitivity analysis and a recursive Bayesian inference approach
,”
Int. J. Numer. Methods Eng.
122
,
2528
(
2021
).
27.
Holierhoek
,
J.
,
Korterink
,
H.
,
van de Pieterman
,
R.
,
Rademakers
,
L.
, and
Lekou
,
D.
, “
Recommended practices for measuring in situ the ‘loads’ on drive train, pitch system and yaw system
,” in
Energy Research Center of the Netherlands (ECN)
(
2010
).
28.
Houtekamer
,
P. L.
,
He
,
B.
, and
Mitchell
,
H. L.
, “
Parallel implementation of an ensemble Kalman filter
,”
Mon. Weather Rev.
142
,
1163
1182
(
2014
).
29.
Houtekamer
,
P. L.
and
Mitchell
,
H. L.
, “
A sequential ensemble Kalman filter for atmospheric data assimilation
,”
Mon. Weather Rev.
129
,
123
137
(
2001
).
30.
IEC
,
IEC 61400-1, Wind Turbines-Part 1
(
IEC
,
2005
).
31.
IEC,
IEC 61400-1: 2019: Wind Energy Generation Systems-Part 1: Design Requirements
(
IEC
,
2019
).
32.
Iooss
,
B.
,
Janon
,
A.
,
Pujol
,
G.
,
with contributions from Broto
,
B.
,
Boumhaout
,
K.
,
Veiga
,
S. D.
,
Delage
,
T.
,
Fruth
,
J.
,
Gilquin
,
L.
,
Guillaume
,
J.
,
Le Gratiet
,
L.
,
Lemaitre
,
P.
,
Nelson
,
B. L.
,
Monari
,
F.
,
Oomen
,
R.
,
Rakovec
,
O.
,
Ramos
,
B.
,
Roustant
,
O.
,
Song
,
E.
,
Staum
,
J.
,
Sueur
,
R.
,
Touati
,
T.
, and
Weber
,
F.
, see https://CRAN.R-project.org/package=sensitivity for “
Sensitivity: Global Sensitivity Analysis of Model Outputs, r package version 1.16.0
” (
2019
).
33.
Jansen
,
M. J.
, “
Analysis of variance designs for model output
,”
Comput. Phys. Commun.
117
,
35
43
(
1999
).
34.
Jonkman
,
B. J.
, “
Turbsim user's guide: Version 1.50
,”
Technical Report No. NREL/TP-500-46198
[
National Renewable Energy Lab (NREL)
,
Golden, CO
,
2009
].
35.
Jonkman
,
J. M.
and
Buhl
,
M. L.
, Jr.
 et al.,
Fast User's Guide
(
National Renewable Energy Laboratory
,
Golden, CO
,
2005
), Vol.
365
, p.
366
.
36.
Julier
,
S. J.
and
Uhlmann
,
J. K.
, “
New extension of the Kalman filter to nonlinear systems
,” in
Signal Processing, Sensor Fusion, and Target Recognition VI
(
International Society for Optics and Photonics
,
1997
), Vol.
3068
, pp.
182
193
.
37.
Kaimal
,
J. C.
,
Wyngaard
,
J. C.
,
Izumi
,
Y.
, and
Coté
,
O.
, “
Spectral characteristics of surface-layer turbulence
,”
Q. J. R. Meteorol. Soc.
98
,
563
589
(
1972
).
38.
Kalman
,
R. E.
, “
A new approach to linear filtering and prediction problems
,”
J. Basic Eng.
82
,
35
45
(
1960
).
39.
Koukoura
,
C.
, “
Validated loads prediction models for offshore wind turbines for enhanced component reliability
,” Ph.D. thesis (
Technical University of Denmark
,
2014
).
40.
Lamboni
,
M.
,
Monod
,
H.
, and
Makowski
,
D.
, “
Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models
,”
Reliab. Eng. Syst. Saf.
96
,
450
459
(
2011
).
41.
Lguensat
,
R.
,
Tandeo
,
P.
,
Ailliot
,
P.
,
Pulido
,
M.
, and
Fablet
,
R.
, “
The analog data assimilation
,”
Mon. Weather Rev.
145
,
4093
4107
(
2017
).
42.
Lorenz
,
E. N.
, “
Atmospheric predictability as revealed by naturally occurring analogues
,”
J. Atmos. Sci.
26
,
636
646
(
1969
).
43.
Marrel
,
A.
,
Iooss
,
B.
,
Van Dorpe
,
F.
, and
Volkova
,
E.
, “
An efficient methodology for modeling complex computer codes with gaussian processes
,”
Comput. Stat. Data Anal.
52
,
4731
4744
(
2008
).
44.
Meyers
,
M. A.
and
Chawla
,
K. K.
,
Mechanical Behavior of Materials
(
Cambridge University Press
,
2008
).
45.
Pathak
,
J.
,
Hunt
,
B.
,
Girvan
,
M.
,
Lu
,
Z.
, and
Ott
,
E.
, “
Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,”
Phys. Rev. Lett.
120
,
024102
(
2018
).
46.
Peterson
,
L. E.
, “
K-nearest neighbor
,”
Scholarpedia
4
,
1883
(
2009
).
47.
Robertson
,
A. N.
,
Shaler
,
K.
,
Sethuraman
,
L.
, and
Jonkman
,
J. M.
, “
Sensitivity analysis of the effect of wind characteristics and turbine properties on wind turbine loads
,”
Wind Energy Sci.
4
,
479
(
2019a
).
48.
Robertson
,
A. N.
,
Shaler
,
K.
,
Sethuraman
,
L.
, and
Jonkman
,
J. M.
, “
Sensitivity of uncertainty in wind characteristics and wind turbine properties on wind turbine extreme and fatigue loads
,”
No. NREL/JA-5000-74246
[National Renewable Energy Lab. (NREL), Golden, CO,
2019b
].
49.
Saranyasoontorn
,
K.
,
Manuel
,
L.
, and
Veers
,
P.
, “
On estimation of coherence in inflow turbulence based on field measurements
,” AIAA Paper No. 2004-1002,
2004
.
50.
Simms
,
D.
,
Schreck
,
S.
,
Hand
,
M.
, and
Fingersh
,
L. J.
, “
NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: A comparison of predictions to measurements
,”
Technical Report No.
NREL/TP-500-29494 (
National Renewable Energy Lab
.,
Golden, CO
,
2001
).
51.
Snyder
,
C.
and
Zhang
,
F.
, “
Assimilation of simulated Doppler radar observations with an ensemble Kalman filter
,”
Mon. Weather Rev.
131
,
1663
(
2003
).
52.
Sobol'
,
I. M.
, “
On sensitivity estimation for nonlinear mathematical models
,”
Mat. Model.
2
,
112
118
(
1990
).
53.
Solari
,
G.
and
Piccardo
,
G.
, “
Probabilistic 3-D turbulence modeling for gust buffeting of structures
,”
Probab. Eng. Mech.
16
,
73
86
(
2001
).
54.
Tandeo
,
P.
,
Ailliot
,
P.
,
Fablet
,
R.
,
Ruiz
,
J.
,
Rousseau
,
F.
, and
Chapron
,
B.
, “
The analog ensemble Kalman filter and smoother
,” in
CI 2014: 4th International Workshop on Climate Informatics
(
2014
).
55.
Tandeo
,
P.
,
Ailliot
,
P.
,
Ruiz
,
J.
,
Hannart
,
A.
,
Chapron
,
B.
,
Cuzol
,
A.
,
Monbet
,
V.
,
Easton
,
R.
, and
Fablet
,
R.
, “
Combining analog method and ensemble data assimilation: Application to the Lorenz-63 chaotic system
,” in
Machine Learning and Data Mining Approaches to Climate Science
(
Springer
,
2015
), pp.
3
12
.
56.
Toth
,
Z.
, “
Long-range weather forecasting using an analog approach
,”
J. Clim.
2
,
594
607
(
1989
).
57.
Veldkamp
,
H. F.
,
Chances in Wind Energy: A Probalistic Approach to Wind Turbine Fatigue Design
(
Delft University Wind Energy Research Institute
,
2006
).
58.
Welch
,
P.
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
,
70
73
(
1967
).
59.
Wells
,
C.
,
The Kalman Filter in Finance
(
Springer Science and Business Media
,
2013
), Vol.
32
.
60.
Witcher
,
D.
, “
Uncertainty quantification techniques in wind turbine
,” oral presentation, DNV GL (
2017
).
61.
Wold
,
S.
,
Esbensen
,
K.
, and
Geladi
,
P.
, “
Principal component analysis
,”
Chemometr. Intell. Lab. Syst.
2
,
37
52
(
1987
).
You do not currently have access to this content.