Thermal energy storage using phase change materials (PCMs) plays a significant role in energy efficiency improvement and renewable energy utilization. However, pristine PCMs suffer from liquid leakage, low thermal conductivity, and single function. Bio-based porous materials are low-cost, environmentally friendly, and widely available, which can be used as support materials to prepare shape-stable PCMs effectively. In this article, the sources of bio-based porous materials are divided into plant-based porous materials and animal-based porous materials. To make full use of bio-based porous materials, their processing methods are systematically reviewed, including direct carbonization, hydrothermal carbonization, and activation. In addition, bio-based shape-stable PCMs in various fields, including solar energy storage, building thermal management, industrial waste heat recovery and storage, electromagnetic interference shielding, and other applications, have been summarized. Finally, the challenges and future potential of bio-based shape-stable PCMs are discussed. The utilization of bio-based PCMs may carry thermal energy storage to a new realm and prosperity with more significant economic and environmental benefits.

1.
Y.
Tian
and
C.
Zhao
, “
A review of solar collectors and thermal energy storage in solar thermal applications
,”
Appl. Energy
104
,
538
553
(
2013
).
2.
C.
Finck
,
R.
Li
,
R.
Kramer
, and
W.
Zeiler
, “
Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems
,”
Appl. Energy
209
,
409
425
(
2018
).
3.
H.
Jouhara
,
A.
Żabnieńska-Góra
,
N.
Khordehgah
,
D.
Ahmad
, and
T.
Lipinski
, “
Latent thermal energy storage technologies and applications: A review
,”
Int. J. Thermofluids
5–6
,
100039
(
2020
).
4.
X.
Huang
,
X.
Chen
,
A.
Li
,
D.
Atinafu
,
H.
Gao
,
W.
Dong
, and
G.
Wang
, “
Shape-stabilized phase change materials based on porous supports for thermal energy storage applications
,”
Chem. Eng. J.
356
,
641
661
(
2019
).
5.
A. F.
Regin
,
S.
Solanki
, and
J.
Saini
, “
Heat transfer characteristics of thermal energy storage system using PCM capsules: A review
,”
Renewable Sustainable Energy Rev.
12
(
9
),
2438
2458
(
2008
).
6.
I.
Sarbu
and
A.
Dorca
, “
Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials
,”
Int. J. Energy Res.
43
(
1
),
29
64
(
2019
).
7.
S. B.
Romdhane
,
A.
Amamou
,
R. B.
Khalifa
,
N. M.
Said
,
Z.
Younsi
, and
A.
Jemni
, “
A review on thermal energy storage using phase change materials in passive building applications
,”
J. Build. Eng.
32
,
101563
(
2020
).
8.
Y.
Li
,
Y. A.
Samad
,
K.
Polychronopoulou
,
S. M.
Alhassan
, and
K.
Liao
, “
From biomass to high performance solar–thermal and electric–thermal energy conversion and storage materials
,”
J. Mater. Chem. A
2
(
21
),
7759
7765
(
2014
).
9.
H.
Zhang
,
J.
Baeyens
,
G.
Cáceres
,
J.
Degreve
, and
Y.
Lv
, “
Thermal energy storage: Recent developments and practical aspects
,”
Prog. Energy Combust. Sci.
53
,
1
40
(
2016
).
10.
A.
Sharma
,
V. V.
Tyagi
,
C. R.
Chen
, and
D.
Buddhi
, “
Review on thermal energy storage with phase change materials and applications
,”
Renewable Sustainable Energy Rev.
13
(
2
),
318
345
(
2009
).
11.
D.
Gao
,
Y.
Sun
,
A. M.
Fong
, and
X.
Gu
, “
Mineral-based form-stable phase change materials for thermal energy storage: A review on encapsulation techniques, performance enhancements and practical applications
,”
Energy Storage Mater.
46
,
100
128
(
2022
).
12.
M. H.
Sipponen
,
A.
Henn
,
P.
Penttilä
, and
M.
Österberg
, “
Lignin-fatty acid hybrid nanocapsules for scalable thermal energy storage in phase-change materials
,”
Chem. Eng. J.
393
,
124711
(
2020
).
13.
T.
Chen
,
C.
Liu
,
P.
Mu
,
H.
Sun
,
Z.
Zhu
,
W.
Liang
, and
A.
Li
, “
Fatty amines/graphene sponge form-stable phase change material composites with exceptionally high loading rates and energy density for thermal energy storage
,”
Chem. Eng. J.
382
,
122831
(
2020
).
14.
R.
Höfer
and
J.
Bigorra
, “
Biomass-based green chemistry: Sustainable solutions for modern economies
,”
Green Chem. Lett. Rev.
1
(
2
),
79
97
(
2008
).
15.
E.
Scott
,
F.
Peter
, and
J.
Sanders
, “
Biomass in the manufacture of industrial products—the use of proteins and amino acids
,”
Appl. Microbiol. Biotechnol.
75
(
4
),
751
762
(
2007
).
16.
B.
Hu
,
K.
Wang
,
L.
Wu
,
S. H.
Yu
,
M.
Antonietti
, and
M. M.
Titirici
, “
Engineering carbon materials from the hydrothermal carbonization process of biomass
,”
Adv. Mater.
22
(
7
),
813
828
(
2010
).
17.
D. G.
Atinafu
,
S. J.
Chang
,
K.-H.
Kim
, and
S.
Kim
, “
Tuning surface functionality of standard biochars and the resulting uplift capacity of loading/energy storage for organic phase change materials
,”
Chem. Eng. J.
394
,
125049
(
2020
).
18.
J.
Song
,
Y.
Cai
,
M.
Du
,
X.
Hou
,
F.
Huang
, and
Q.
Wei
, “
3D lamellar structure of biomass-based porous carbon derived from towel gourd toward phase change composites with thermal management and protection
,”
ACS Appl. Bio Mater.
3
(
12
),
8923
8932
(
2020
).
19.
X.
Tong
,
N.
Li
,
M.
Zeng
, and
Q.
Wang
, “
Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges
,”
Renewable Sustainable Energy Rev.
108
,
398
422
(
2019
).
20.
X.
Chen
,
P.
Cheng
,
Z.
Tang
,
X.
Xu
,
H.
Gao
, and
G.
Wang
, “
Carbon‐based composite phase change materials for thermal energy storage, transfer, and conversion
,”
Adv. Sci.
8
(
9
),
2001274
(
2021
).
21.
H.
Zhang
,
J.
Cheng
,
Q.
Wang
,
D.
Xiong
,
J.
Song
,
Z.
Tang
, and
X.
Liu
, “
The graphite foam/erythritol composites with ultrahigh thermal conductivity for medium temperature applications
,”
Sol. Energy Mater. Sol. Cells
230
,
111135
(
2021
).
22.
Y.
Xie
,
W.
Li
,
H.
Huang
,
D.
Dong
,
X.
Zhang
,
L.
Zhang
,
Y.
Chen
,
X.
Sheng
, and
X.
Lu
, “
Bio-based radish@PDA/PEG sandwich composite with high efficiency solar thermal energy storage
,”
ACS Sustainable Chem. Eng.
8
(
22
),
8448
8457
(
2020
).
23.
W.
Gondora
,
K.
Doudin
,
D. J.
Nowakowski
,
B.
Xiao
,
Y.
Ding
,
T.
Bridgwater
, and
Q.
Yuan
, “
Encapsulation of phase change materials using rice-husk-char
,”
Appl. Energy
182
,
274
281
(
2016
).
24.
L.
Liu
,
X.
Fan
,
Y.
Zhang
,
S.
Zhang
,
W.
Wang
,
X.
Jin
, and
B.
Tang
, “
Novel bio-based phase change materials with high enthalpy for thermal energy storage
,”
Appl. Energy
268
,
114979
(
2020
).
25.
F.
Landi
,
C.
Fabiaani
, and
A. L.
Pisello
, “
Palm oil for seasonal thermal energy storage applications in buildings: The potential of multiple melting ranges in blends of bio-based fatty acids
,”
J. Energy Storage
29
,
101431
(
2020
).
26.
L.
Boussaba
,
A.
Foufa
,
S.
Makhlouf
,
G.
Lefebvre
, and
L.
Royon
, “
Elaboration and properties of a composite bio-based PCM for an application in building envelopes
,”
Constr. Build. Mater.
185
,
156
165
(
2018
).
27.
H.
Zhang
,
M.
Duquesne
,
A.
Godin
,
S.
Niedermaier
,
E. P.
del Barrio
,
S. V.
Nedea
, and
C. C.
Rindt
, “
Experimental and in silico characterization of xylitol as seasonal heat storage material
,”
Fluid Phase Equilib.
436
,
55
68
(
2017
).
28.
Z.
Fan
,
Y.
Zhao
,
X.
Liu
,
Y.
Shi
, and
D.
Jiang
, “
Thermal properties and reliabilities of lauric acid-based binary eutectic fatty acid as a phase change material for building energy conservation
,”
ACS Omega
7
(
18
),
16097
16108
(
2022
).
29.
J. D.
Scharwies
and
J. R.
Dinneny
, “
Water transport, perception, and response in plants
,”
J. Plant Res.
132
(
3
),
311
324
(
2019
).
30.
F.
Pan
,
Z.
Liu
,
B.
Deng
,
Y.
Dong
,
X.
Zhu
,
C.
Huang
, and
W.
Lu
, “
Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance
,”
Nano-micro Lett.
13
(
1
),
43
(
2021
).
31.
Y.
Wei
,
J.
Li
,
F.
Sun
,
J.
Wu
, and
L.
Zhao
, “
Leakage-proof phase change composites supported by biomass carbon aerogels from succulents
,”
Green Chem.
20
(
8
),
1858
1865
(
2018
).
32.
R.
Wen
,
Y.
Liu
,
C.
Yang
,
X.
Zhu
,
Z.
Huang
,
X.
Zhang
, and
W.
Gao
, “
Enhanced thermal properties of stearic acid/carbonized maize straw composite phase change material for thermal energy storage in buildings
,”
J. Energy Storage
36
,
102420
(
2021
).
33.
S.
Liu
,
S.
Peng
,
B.
Zhang
,
B.
Xue
,
Z.
Yang
,
S.
Wang
, and
G.
Xu
, “
Effects of biochar pyrolysis temperature on thermal properties of polyethylene glycol/biochar composites as shape-stable biocomposite phase change materials
,”
RSC Adv.
12
(
16
),
9587
9598
(
2022
).
34.
T.
Shi
,
X.
Zhang
,
J.
Qiao
,
X.
Wu
,
G.
Chen
,
G.
Leng
,
F.
Lin
,
X.
Min
, and
Z.
Huang
, “
Preparation and characterization of composite phase change materials based on paraffin and carbon foams derived from starch
,”
Polymer
212
,
123143
(
2021
).
35.
N.
Feng
,
Z.
Kang
, and
D.
Hu
, “
Shape-stabilized and antibacterial composite phase change materials based on wood-based cellulose micro-framework, erythritol-urea or erythritol-thiourea for thermal energy storage
,”
Sol. Energy
223
,
19
32
(
2021
).
36.
Y.
Zhao
,
X.
Min
,
Z.
Huang
,
Y.
Liu
,
X.
Wu
, and
M.
Fang
, “
Honeycomb-like structured biological porous carbon encapsulating PEG: A shape-stable phase change material with enhanced thermal conductivity for thermal energy storage
,”
Energy Build.
158
,
1049
1062
(
2018
).
37.
J.
Li
,
B.
Michalkiewicz
,
J.
Min
,
C.
Ma
,
X.
Chen
,
J.
Gong
,
E.
Mijowska
, and
T.
Tang
, “
Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture
,”
Chem. Eng. J.
360
,
250
259
(
2019
).
38.
H.
Xu
,
L.
Wang
,
Y.
Zhang
,
Y.
Chen
, and
S.
Gao
, “
Pore-structure regulation of biomass-derived carbon materials for an enhanced supercapacitor performance
,”
Nanoscale
13
(
22
),
10051
10060
(
2021
).
39.
S.
Dutta
,
A.
Bhaumik
, and
K. C.-W.
Wu
, “
Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications
,”
Energy Environ. Sci.
7
(
11
),
3574
3592
(
2014
).
40.
C. O.
Chin
,
X.
Yang
,
S. C.
Paul
,
L. S.
Wong
, and
S. Y.
Kong
, “
Development of thermal energy storage lightweight concrete using paraffin-oil palm kernel shell-activated carbon composite
,”
J. Cleaner Prod.
261
,
121227
(
2020
).
41.
D. G.
Atinafu
,
B. Y.
Yun
,
Y. U.
Kim
,
S.
Wi
, and
S.
Kim
, “
Introduction of eicosane into biochar derived from softwood and wheat straw: Influence of porous structure and surface chemistry
,”
Chem. Eng. J.
415
,
128887
(
2021
).
42.
H. H.
Mert
,
A.
Eslek
,
E. H.
Mert
, and
M. S.
Mert
, “
Preparation and characterization of shape-stable bio-based composite phase change materials for thermal energy storage: coconut oil/activated carbon from cherry stones doped composites
,”
Energy Sources, Part A
44
(
2
),
5381
5397
(
2022
).
43.
Y.
Chen
,
Z.
Cui
,
H.
Ding
,
Y.
Wan
,
Z.
Tang
, and
J.
Gao
, “
Cost-effective biochar produced from agricultural residues and its application for preparation of high performance form-stable phase change material via simple method
,”
Int. J. Mol. Sci.
19
(
10
),
3055
(
2018
).
44.
X.
Gu
,
P.
Liu
,
C.
Liu
,
L.
Peng
, and
H.
He
, “
A novel form-stable phase change material of palmitic acid-carbonized pepper straw for thermal energy storage
,”
Mater. Lett.
248
,
12
15
(
2019
).
45.
B.
Tan
,
Z.
Huang
,
Z.
Yin
,
X.
Min
,
Y.
Liu
,
X.
Wu
, and
M.
Fang
, “
Preparation and thermal properties of shape-stabilized composite phase change materials based on polyethylene glycol and porous carbon prepared from potato
,”
RSC Adv.
6
(
19
),
15821
15830
(
2016
).
46.
C.
Zheng
,
H.
Zhang
,
L.
Xu
, and
F.
Xu
, “
Production of multifunctional bamboo-based phase change encapsulating material by straightforward dry ball milling
,”
J. Energy Storage
46
,
103630
(
2022
).
47.
G.
Hekimoğlu
,
A.
Sarı
,
T.
Kar
,
S.
Keleş
,
K.
Kaygusuz
,
V.
Tyagi
,
R.
Sharma
,
A.
Al-Ahmed
,
F. A.
Al-Sulaiman
, and
T. A.
Saleh
, “
Walnut shell derived bio-carbon/methyl palmitate as novel composite phase change material with enhanced thermal energy storage properties
,”
J. Energy Storage
35
,
102288
(
2021
).
48.
Y.
Chen
,
H.
Ding
,
J.
Gao
,
X.
Tang
,
Y.
Liu
, and
M.
Yang
, “
A novel strategy for enhancing the thermal conductivity of shape-stable phase change materials via carbon-based in situ reduction of metal ions
,”
J. Cleaner Prod.
243
,
118627
(
2020
).
49.
M.
Sawadogo
,
F.
Benmahiddine
,
A. E. A.
Hamami
,
R.
Belarbi
,
A.
Godin
, and
M.
Duquesne
, “
Investigation of a novel bio-based phase change material hemp concrete for passive energy storage in buildings
,”
Appl. Therm. Eng.
212
,
118620
(
2022
).
50.
J.
Zhao
,
Y.
Li
,
X.
Fang
,
J.
Sun
,
W.
Zhang
,
B.
Wang
,
J.
Xu
,
Y.
Liu
, and
H.
Guo
, “
High interface compatibility and phase change enthalpy of heat storage wood plastic composites as bio-based building materials for energy saving
,”
J. Energy Storage
51
,
104293
(
2022
).
51.
J.
Zhao
,
J.
Sun
,
Y.
Li
,
R.
Xia
,
W.
Zhang
,
B.
Wang
,
X.
Fang
,
Y.
Liu
, and
H.
Guo
, “
Wood-plastic materials with organic–inorganic hybrid phase change thermal storage as novel green energy storage composites for building energy conservation
,”
J. Mater. Sci.
57
(
5
),
3629
3644
(
2022
).
52.
G.
Hekimoğlu
,
A.
Sarı
,
T.
Kar
,
S.
Keleş
,
K.
Kaygusuz
,
N.
Yıldırım
,
V. V.
Tyagi
,
R. K.
Sharma
, and
T. A.
Saleh
, “
Carbonized waste hazelnut wood‐based shape‐stable composite phase change materials for thermal management implementations
,”
Int. J. Energy Res.
45
(
7
),
10271
10284
(
2021
).
53.
J.
Huang
,
B.
Wu
,
S.
Lyu
,
T.
Li
,
H.
Han
,
D.
Li
,
J.-K.
Wang
,
J.
Zhang
,
X.
Lu
, and
D.
Sun
, “
Improving the thermal energy storage capability of diatom-based biomass/polyethylene glycol composites phase change materials by artificial culture methods
,”
Sol. Energy Mater. Sol. Cells
219
,
110797
(
2021
).
54.
B.
Liang
,
X.
Lu
,
R.
Li
,
W.
Tu
,
Z.
Yang
, and
T.
Yuan
, “
Solvent-free preparation of bio-based polyethylene glycol/wood flour composites as novel shape-stabilized phase change materials for solar thermal energy storage
,”
Sol. Energy Mater. Sol. Cells
200
,
110037
(
2019
).
55.
K.
Yu
,
Y.
Liu
,
M.
Jia
, and
Y.
Yang
, “
Bio-based dual-functionalized phase change composite: Ultrafast solar-to-thermal conversion and reinforced heat storage capacity
,”
Energy Fuels
35
(
19
),
16162
16173
(
2021
).
56.
B.
Wu
,
S.
Lyu
,
H.
Han
,
T.
Li
,
H.
Sun
,
J.-K.
Wang
,
D.
Li
,
F.
Lei
,
J.
Huang
, and
D.
Sun
, “
Biomass-based shape-stabilized phase change materials from artificially cultured ship-shaped diatom frustules with high enthalpy for thermal energy storage
,”
Composites, Part B
205
,
108500
(
2021
).
57.
W.
Zhang
,
X.
Zhang
,
X.
Zhang
,
Z.
Yin
,
Y.
Liu
,
M.
Fang
,
X.
Wu
,
X.
Min
, and
Z.
Huang
, “
Lauric-stearic acid eutectic mixture/carbonized biomass waste corn cob composite phase change materials: Preparation and thermal characterization
,”
Thermochim. Acta
674
,
21
27
(
2019
).
58.
X.
Zhang
,
Z.
Huang
,
Z.
Yin
,
W.
Zhang
,
Y.
Huang
,
Y.
Liu
,
M.
Fang
,
X.
Wu
, and
X.
Min
, “
Form stable composite phase change materials from palmitic-lauric acid eutectic mixture and carbonized abandoned rice: Preparation, characterization, and thermal conductivity enhancement
,”
Energy Build.
154
,
46
54
(
2017
).
59.
H.-C.
Zhang
,
B.-H.
Kang
,
X.
Sheng
, and
X.
Lu
, “
Novel bio-based pomelo peel flour/polyethylene glycol composite phase change material for thermal energy storage
,”
Polymers
11
(
12
),
2043
(
2019
).
60.
C.
Wang
,
C.
Cheng
,
T.
Jin
, and
H.
Dong
, “
Water evaporation inspired biomass-based PCM from daisy stem and paraffin for building temperature regulation
,”
Renewable Energy
194
,
211
219
(
2022
).
61.
H.
Liu
,
Z.
Zheng
,
Z.
Qian
,
Q.
Wang
,
D.
Wu
, and
X.
Wang
, “
Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest
,”
Sol. Energy Mater. Sol. Cells
229
,
111140
(
2021
).
62.
S.
Liu
,
H.
Wu
,
Y.
Du
,
X.
Lu
, and
J.
Qu
, “
Shape-stable composite phase change materials encapsulated by bio-based balsa wood for thermal energy storage
,”
Sol. Energy Mater. Sol. Cells
230
,
111187
(
2021
).
63.
Q.
Wang
,
Z.
Gao
, and
Y.
Xiong
, “
Cellulose/Ag-MWCNT/MXene composite scaffolds with hierarchical pores and fast light-to-heat conversion for the preparation of shape-stable phase change materials for thermal energy storage
,”
J. Mater. Sci.
57
(
3
),
1962
1976
(
2022
).
64.
P.
Zhao
,
C.
Deng
,
Z.
Zhao
,
P.
Lu
,
S.
He
, and
Y.
Wang
, “
Hypophosphite tailored graphitized hierarchical porous biochar toward highly efficient solar thermal energy harvesting and stable storage/release
,”
Chem. Eng. J.
420
,
129942
(
2021
).
65.
Z.
Tao
,
M.
Yang
,
L.
Wu
,
J.
Yan
,
F.
Yang
,
J.
Lin
,
J.
Wang
, and
G.
Wang
, “
Phase change material based on polypyrrole/Fe3O4-functionalized hollow kapok fiber aerogel matrix for solar/magnetic-thermal energy conversion and storage
,”
Chem. Eng. J.
423
,
130180
(
2021
).
66.
N.
Sheng
,
Z.
Rao
,
C.
Zhu
, and
H.
Habazaki
, “
Honeycomb carbon fibers strengthened composite phase change materials for superior thermal energy storage
,”
Appl. Therm. Eng.
164
,
114493
(
2020
).
67.
S.
Li
,
J.
Li
,
Y.
Geng
,
Y.
Liao
,
S.
Chen
,
K.
Sun
, and
M.
Li
, “
Shape-stable phase change composites based on carbonized waste pomelo peel for low-grade thermal energy storage
,”
J. Energy Storage
47
,
103556
(
2022
).
68.
C.
Wang
,
W.
Liang
,
Y.
Yang
,
F.
Liu
,
H.
Sun
,
Z.
Zhu
, and
A.
Li
, “
Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage
,”
Renewable Energy
153
,
182
192
(
2020
).
69.
S.
Xiao
,
X.
Hu
,
L.
Jiang
,
Y.
Ma
,
Y.
Che
,
S.
Zu
, and
X.
Jiang
, “
Nano-Ag modified bio-based loofah foam/polyethylene glycol composite phase change materials with higher photo-thermal conversion efficiency and thermal conductivity
,”
J. Energy Storage
54
,
105238
(
2022
).
70.
J.
An
,
W.
Liang
,
P.
Mu
,
C.
Wang
,
T.
Chen
,
Z.
Zhu
,
H.
Sun
, and
A.
Li
, “
Novel sugar alcohol/carbonized kapok fiber composites as form-stable phase-change materials with exceptionally high latent heat for thermal energy storage
,”
ACS Omega
4
(
3
),
4848
4855
(
2019
).
71.
N.
Sheng
,
T.
Nomura
,
C.
Zhu
,
H.
Habazaki
, and
T.
Akiyama
, “
Cotton-derived carbon sponge as support for form-stabilized composite phase change materials with enhanced thermal conductivity
,”
Sol. Energy Mater. Sol. Cells
192
,
8
15
(
2019
).
72.
Y.
Li
,
X.
Huang
,
J.
Lv
,
F.
Wang
,
S.
Jiang
, and
G.
Wang
, “
Enzymolysis-treated wood-derived hierarchical porous carbon for fluorescence-functionalized phase change materials
,”
Composites, Part B
234
,
109735
(
2022
).
73.
H.
Liu
,
Z.
Qian
,
Q.
Wang
,
D.
Wu
, and
X.
Wang
, “
Development of renewable biomass-derived carbonaceous aerogel/mannitol phase-change composites for high thermal-energy-release efficiency and shape stabilization
,”
ACS Appl. Energy Mater.
4
(
2
),
1714
1730
(
2021
).
74.
J.
Niu
,
J.
Liang
,
R.
Shao
,
M.
Liu
,
M.
Dou
,
Z.
Li
,
Y.
Huang
, and
F.
Wang
, “
Tremella-like N,O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors
,”
Nano Energy
41
,
285
292
(
2017
).
75.
T.
Yang
,
T.
Qian
,
M.
Wang
,
X.
Shen
,
N.
Xu
,
Z.
Sun
, and
C.
Yan
, “
A sustainable route from biomass byproduct okara to high content nitrogen‐doped carbon sheets for efficient sodium ion batteries
,”
Adv. Mater.
28
(
3
),
539
545
(
2016
).
76.
J.
Lu
,
X.
Bo
,
H.
Wang
, and
L.
Guo
, “
Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction
,”
Electrochim. Acta
108
,
10
16
(
2013
).
77.
T.
Li
,
D.
Zhi
,
Z.
Guo
,
J.
Li
,
Y.
Chen
, and
F.
Meng
, “
3D porous biomass-derived carbon materials: biomass sources, controllable transformation and microwave absorption application
,”
Green Chem.
24
,
647
674
(
2022
).
78.
R.
Wen
,
P.
Jia
,
Z.
Huang
,
M.
Fang
,
Y.
Liu
,
X.
Wu
,
X.
Min
, and
W.
Gao
, “
Thermal energy storage properties and thermal reliability of PEG/bone char composite as a form-stable phase change material
,”
J. Therm. Anal. Calorim.
132
(
3
),
1753
1761
(
2018
).
79.
M.
Biesuz
,
F.
Valentini
,
M.
Bortolotti
,
A.
Zambotti
,
F.
Cestari
,
A.
Bruni
,
V. M.
Sglavo
,
G. D.
Sorarù
,
A.
Dorigato
, and
A.
Pegoretti
, “
Biogenic architectures for green, cheap, and efficient thermal energy storage and management
,”
Renewable Energy
178
,
96
107
(
2021
).
80.
A. I.
Renzi
,
C.
Carfagna
, and
P.
Persico
, “
Thermoregulated natural leather using phase change materials: An example of bioinspiration
,”
Appl. Therm. Eng.
30
(
11–12
),
1369
1376
(
2010
).
81.
X.
Gong
,
G.
Dang
,
J.
Guo
,
Y.
Liu
, and
Y.
Gong
, “
Sodium alginate/feather keratin-g-allyloxy polyethylene glycol composite phase change fiber
,”
Int. J. Biol. Macromol.
131
,
192
200
(
2019
).
82.
A.
Sarı
and
A.
Karaipekli
, “
Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage
,”
Mater. Chem. Phys.
109
(
2–3
),
459
464
(
2008
).
83.
A.
Sarı
and
A.
Karaipekli
, “
Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage
,”
Sol. Energy Mater. Sol. Cells
93
(
5
),
571
576
(
2009
).
84.
H.
Zhou
,
L.
Lv
,
Y.
Zhang
,
M.
Ji
, and
K.
Cen
, “
Preparation and characterization of a shape-stable xylitol/expanded graphite composite phase change material for thermal energy storage
,”
Sol. Energy Mater. Sol. Cells
230
,
111244
(
2021
).
85.
N.
Feng
,
Z.
Kang
, and
D.
Hu
, “
The ingenious combination of thermal energy storage and temperature visualization of binary fatty acid eutectic/eucalyptus wood fiber skeleton composites
,”
Sol. Energy
236
,
522
532
(
2022
).
86.
W.
Mateo
,
H.
Lei
,
E.
Villota
,
M.
Qian
,
Y.
Zhao
,
E.
Huo
,
Q.
Zhang
,
X.
Lin
, and
C.
Wang
, “
One-step synthesis of biomass-based sulfonated carbon catalyst by direct carbonization-sulfonation for organosolv delignification
,”
Bioresour. Technol.
319
,
124194
(
2021
).
87.
J. S.
Cha
,
S. H.
Park
,
S. C.
Jung
,
C.
Ryu
,
J. K.
Jeon
,
M.
Shin
, and
Y. K.
Park
, “
Production and utilization of biochar: A review
,”
J. Ind. Eng. Chem.
40
,
1
15
(
2016
).
88.
L.
Tao
,
Y.
Huang
,
X.
Yang
,
Y.
Zheng
,
C.
Liu
,
M.
Di
, and
Z.
Zheng
, “
Flexible anode materials for lithium-ion batteries derived from waste biomass-based carbon nanofibers: I. Effect of carbonization temperature
,”
RSC Adv.
8
(
13
),
7102
7109
(
2018
).
89.
M.
Dudek
,
B.
Adamczyk
,
M.
Sitarz
,
M.
Śliwa
,
R.
Lach
,
M.
Skrzypkiewicz
,
A.
Raźniak
,
M.
Ziąbka
,
J.
Zuwała
, and
P.
Grzywacz
, “
The usefulness of walnut shells as waste biomass fuels in direct carbon solid oxide fuel cells
,”
Biomass Bioenergy
119
,
144
154
(
2018
).
90.
K.
Lu
,
W. J.
Lee
,
W. H.
Chen
,
S.
Liu
, and
T.
Lin
, “
Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres
,”
Bioresour. Technol.
123
,
98
105
(
2012
).
91.
E.
Apaydın-Varol
and
Y.
Erülken
, “
A study on the porosity development for biomass based carbonaceous materials
,”
J. Taiwan Inst. Chem. Eng.
54
,
37
44
(
2015
).
92.
J.
Liu
,
J.
Yao
,
Y.
Yuan
,
Q.
Liu
,
W.
Zhang
,
X.
Zhang
, and
J.
Gu
, “
Surface‐carbonized bamboos with multilevel functional biostructures deliver high photothermal water evaporation performance
,”
Adv. Sustainable Syst.
4
(
9
),
2000126
(
2020
).
93.
Y.
Qian
,
Y.
Li
,
Z.
Pan
,
J.
Tian
,
N.
Lin
, and
Y.
Qian
, “
Hydrothermal ‘disproportionation’ of biomass into oriented carbon microsphere anode and 3D porous carbon cathode for potassium ion hybrid capacitor
,”
Adv. Funct. Mater.
31
(
30
),
2103115
(
2021
).
94.
S.
Román
,
J.
Nabais
,
C.
Laginhas
,
B.
Ledesma
, and
J.
González
, “
Hydrothermal carbonization as an effective way of densifying the energy content of biomass
,”
Fuel Process. Technol.
103
,
78
83
(
2012
).
95.
X.
Peng
,
L.
Zhang
,
Z.
Chen
,
L.
Zhong
,
D.
Zhao
,
X.
Chi
,
X.
Zhao
,
L.
Li
,
X.
Lu
, and
K.
Leng
, “
Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes
,”
Adv. Mater.
31
(
16
),
1900341
(
2019
).
96.
Y.
Yu
,
N.
Qiao
,
D.
Wang
,
Q.
Zhu
,
F.
Fu
,
R.
Cao
,
R.
Wang
,
W.
Liu
, and
B.
Xu
, “
Fluffy honeycomb-like activated carbon from popcorn with high surface area and well-developed porosity for ultra-high efficiency adsorption of organic dyes
,”
Bioresour. Technol.
285
,
121340
(
2019
).
97.
D.
Loya González
,
M.
Loredo Cancino
,
E.
Soto Regalado
,
P.
Rivas García
,
F.
de Jesús Cerino Córdova
,
R. B.
García Reyes
,
D.
Bustos Martínez
, and
A. E.
Baltazar
, “
Optimal activated carbon production from corn pericarp: A life cycle assessment approach
,”
J. Cleaner Prod.
219
,
316
325
(
2019
).
98.
B.
Sun
,
Y.
Yuan
,
H.
Li
,
X.
Li
,
C.
Zhang
,
F.
Guo
,
X.
Liu
,
K.
Wang
, and
X.
Zhao
, “
Waste-cellulose-derived porous carbon adsorbents for methyl orange removal
,”
Chem. Eng. J.
371
,
55
63
(
2019
).
99.
X.
Zhou
,
Z.
Jia
,
A.
Feng
,
K.
Wang
,
X.
Liu
,
L.
Chen
,
H.
Cao
, and
G.
Wu
, “
Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass
,”
Compos. Commun.
21
,
100404
(
2020
).
100.
L.
Qin
,
Y.
Wu
, and
E.
Jiang
, “
In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage
,”
Energy
242
,
123040
(
2022
).
101.
X.
Su
,
J.
Chen
,
G.
Zheng
,
J.
Yang
,
X.
Guan
,
P.
Liu
, and
X.
Zheng
, “
Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications
,”
Appl. Surf. Sci.
436
,
327
336
(
2018
).
102.
T.
Iwazaki
,
H.
Yang
,
R.
Obinata
,
W.
Sugimoto
, and
Y.
Takasu
, “
Oxygen-reduction activity of silk-derived carbons
,”
J. Power Sources
195
(
18
),
5840
5847
(
2010
).
103.
Z.
Sun
,
W.
Li
,
W.
Song
,
L.
Zhang
, and
Z.
Wang
, “
A high-efficiency solar desalination evaporator composite of corn stalk, Mcnts and TiO2: Ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration
,”
J. Mater. Chem. A
8
(
1
),
349
357
(
2020
).
104.
X.
Hu
,
H.
Huang
,
Y.
Hu
,
X.
Lu
, and
Y.
Qin
, “
Novel bio-based composite phase change materials with reduced graphene oxide-functionalized spent coffee grounds for efficient solar-to-thermal energy storage
,”
Sol. Energy Mater. Sol. Cells
219
,
110790
(
2021
).
105.
D.
Mathis
,
P.
Blanchet
,
V.
Landry
, and
P.
Lagière
, “
Impregnation of wood with microencapsulated bio-based phase change materials for high thermal mass engineered wood flooring
,”
Appl. Sci.
8
(
12
),
2696
(
2018
).
106.
Y.
Li
,
B.
Wang
,
W.
Zhang
,
J.
Zhao
,
X.
Fang
,
J.
Sun
,
R.
Xia
,
H.
Guo
, and
Y.
Liu
, “
Processing wood into a phase change material with high solar-thermal conversion efficiency by introducing stable polyethylene glycol-based energy storage polymer
,”
Energy
254
,
124206
(
2022
).
107.
X.
Chen
,
H.
Gao
,
Z.
Tang
,
W.
Dong
,
A.
Li
, and
G.
Wang
, “
Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization
,”
Energy Environ. Sci.
13
(
12
),
4498
4535
(
2020
).
108.
D.
Lefebvre
and
F. H.
Tezel
, “
A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications
,”
Renewable Sustainable Energy Rev.
67
,
116
125
(
2017
).
109.
Y.
Luo
,
F.
Zhang
,
C.
Li
, and
J.
Cai
, “
Biomass-based shape-stable phase change materials supported by garlic peel-derived porous carbon for thermal energy storage
,”
J. Energy Storage
46
,
103929
(
2022
).
110.
M.
Zhou
,
J.
Wang
,
Y.
Zhao
,
G.
Wang
,
W.
Gu
, and
G.
Ji
, “
Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application
,”
Carbon
183
,
515
524
(
2021
).
111.
S.
Liu
,
M.
Sheng
,
H.
Wu
,
X.
Shi
,
X.
Lu
, and
J.
Qu
, “
Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities
,”
J. Mater. Sci. Technol.
113
,
147
157
(
2022
).
112.
L.
Li
,
J.
Song
,
Y.
Wang
,
M.
Du
,
Q.
Wei
, and
Y.
Cai
, “
Fabrication and performance of shape-stable phase change composites supported by environment-friendly and economical loofah sponge fibers for thermal energy storage
,”
Energy Fuels
36
(
7
),
3938
3946
(
2022
).
113.
X.
Lu
,
J.
Huang
,
W.-Y.
Wong
, and
J.-P.
Qu
, “
A novel bio-based polyurethane/wood powder composite as shape-stable phase change material with high relative enthalpy efficiency for solar thermal energy storage
,”
Sol. Energy Mater. Sol. Cells
200
,
109987
(
2019
).
114.
X.
Lu
,
J.
Huang
,
B.
Kang
,
T.
Yuan
, and
J.-P.
Qu
, “
Bio-based poly (lactic acid)/high-density polyethylene blends as shape-stabilized phase change material for thermal energy storage applications
,”
Sol. Energy Mater. Sol. Cells
192
,
170
178
(
2019
).
115.
Y.
He
,
H.
Li
,
F.
Luo
,
Y.
Jin
,
B.
Huang
, and
Q.
Qian
, “
Bio-based flexible phase change composite film with high thermal conductivity for thermal energy storage
,”
Composites, Part A
151
,
106638
(
2021
).
You do not currently have access to this content.