The blade erosion of a tidal current turbine can lead to significant energy losses and affect stall behavior. To maintain good performance and prevent turbine malfunction, it is important to determine the location and rate of blade erosion caused by particle impact. In this study, a computational fluid dynamics and discrete phase model (CFD–DPM) method is employed to study the erosion characteristics in blades subjected to multiphase flow. The fluid–particle interactions and the influence of turbulence on the particle trajectories are considered in the CFD–DPM model. The maximum erosion location and the average erosion rate are investigated under different particle diameters, particle concentrations, particle shape factors, and airfoil parameters. The fluid velocity, particle velocity, and particle trajectory are further analyzed to reveal the erosion mechanism under different influencing factors. The results show that while both the maximum erosion location and the average erosion rate depend upon particle independence (the greater the degree to which particles deviate from the fluid streamline, the better the particle independence), the latter is also related to the drag force exerted by the particle. For a tidal current turbine, erosion occurs first at the tip and leading edge of the blade, and the most severe erosion area is the blade tip. The erosion laws obtained in this work can provide guidance for erosion prediction, tidal current turbine field site selection, and blade optimization.

1.
L.
Myers
and
A. S.
Bahaj
, “
Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race
,”
Renewable Energy
30
(
11
),
1713
1731
(
2005
).
2.
D.
Li
,
S. J.
Wang
, and
P.
Yuan
, “
An overview of development of tidal current in China: Energy resource, conversion technology and opportunities
,”
Renewable Sustainable Energy Rev.
14
(
9
),
2896
2905
(
2010
).
3.
S. J.
Wang
,
P.
Yuan
,
D.
Li
, and
Y.
Jiao
, “
An overview of ocean renewable energy in China
,”
Renewable Sustainable Energy Rev.
15
(
1
),
91
111
(
2011
).
4.
X. K.
Wang
,
X. J.
Shao
, and
D. X.
Li
,
Fundamental River Mechanics
(
Water & Power Press
,
Beijing
,
2002
).
5.
R. J.
Zhang
,
River Sediment Dynamics
, 2nd ed. (
China Water Power Press
,
Beijing
,
1998
).
6.
K. W.
Ng
,
W. H.
Lam
, and
K. C.
Ng
, “
2002–2012: 10 years of research progress in horizontal-axis marine current turbines
,”
Energies
6
(
3
),
1497
1526
(
2013
).
7.
P. L.
Fraenkel
, “
Power from marine currents
,”
Proc. Inst. Mech. Eng., Part A
216
,
1
14
(
2002
).
8.
A. C.
Hansen
and
C. P.
Butterfield
, “
Aerodynamics of horizontal-axis wind turbines
,”
Annu. Rev. Fluid Mech.
25
,
115
149
(
1993
).
9.
G. P.
Tilly
, “
A two stage mechanism of ductile erosion
,”
Wear
23
(
1
),
87
96
(
1973
).
10.
G. C.
Pereira
,
F. J.
de Souza
, and
D. A.
de Moro Martins
, “
Numerical prediction of the erosion due to particles in elbows
,”
Powder Technol.
261
,
105
117
(
2014
).
11.
A.
Mansouri
,
H.
Arabnejad
,
S. A.
Shirazi
, and
B. S.
McLaury
, “
A combined CFD/experimental methodology for erosion prediction
,”
Wear
332
,
1090
1097
(
2014
).
12.
L. Y.
Liu
,
Y.
Yao
,
F.
Lai
,
J.
Liu
,
W.
Ge
, and
Y.
Yao
, “
Suspended sediment simulation and water purification scheme research of turbid archipelago
,” in
Oceans
(
IEEE
,
2016
).
13.
See http://www.mwr.gov.cn/sj/tjgb/zghlnsgb/ for “
Ministry of Water Resources of the People's Republic of China, China River Sediment Bulletin
” (
2019
).
14.
D. S.
Li
,
C. Z.
Wang
,
Y. R.
Li
,
R. N.
Li
, and
R. J.
Ma
, “
Numerical simulation of wind turbine blade erosion in sandy environment
,”
Acta Energ. Sol. Sin.
39
(
3
),
627
632
(
2018
).
15.
D. S.
Li
,
Y. E.
Wang
,
X. D.
Guo
,
Y. R.
Li
, and
R. N.
Li
, “
Effects of particle shape on erosion characteristic and critical particle Stokes number of wind turbine airfoil
,”
Trans. Chin. Soc. Agric. Eng.
35
(
12
),
224
231
(
2019
).
16.
L. X.
Zhang
,
W.
Sheng
, and
M. L.
Tang
, “
Numerical simulation of erosion and wear of wind turbine blades by different wind speeds under wind carrying sand environment
,”
J. Shenyang Inst. Eng.
17
(
01
),
5
8
(
2021
).
17.
J.
Gao
,
Y.
Zhang
,
J.
Wang
,
L. D.
Su
,
G. J.
Wu
, and
G. Q.
Qi
, “
Study on coatings erosion of wind turbine blades under sand-carrying wind
, ”
Acta Energ. Sol. Sin.
41
(
07
),
367
371
(
2020
).
18.
J.
Wang
,
G. Z.
Du
,
Y.
Zhang
,
Z.
Wu
,
J.
Gao
, and
L. D.
Su
, “
Research on sand erosion wear of wind turbine blade coating in operation state
,”
Mater. Rep.
35
(
04
),
4177
4180
(
2021
).
19.
W. C.
Yu
and
H. Y.
Yue
, “
Position of runoff and sediment of Yangtze River in world rivers
,”
J. Yangtze River Sci. Res. Inst.
6
,
13
16
(
2002
).
20.
L. Q.
Zuo
,
Y. J.
Lu
, and
R. Y.
Ji
, “
Back silting law of the mouth bar channel in Southern Zhejiang muddy coastal estuaries: Case study of Aojiang Estuary
,”
J. Basic Sci. Eng.
22
,
88
105
(
2014
).
21.
W. M. J.
Batten
,
A. S.
Bahaj
, and
A. F.
Molland
, “
The prediction of the hydrodynamic performance of marine current turbines
,”
Renewable Energy
33
,
1085
1096
(
2007
).
22.
S.
Song
,
Y. K.
Demirel
,
M.
Atlar
, and
W. C.
Shi
, “
Prediction of the fouling penalty on the tidal turbine performance and development on its mitigation measures
,”
Appl. Energy
276
,
115498
(
2020
).
23.
J. M.
Walker
,
K. A.
Flack
, and
E. E.
Lust
, “
Experimental and numerical studies of blade roughness and fouling on marine current turbine performance
,”
Renewable Energy
66
,
257
267
(
2014
).
24.
K.
Wang
,
X.
Li
,
Y.
Wang
, and
R.
He
, “
Numerical investigation of the erosion behavior in elbows of petroleum pipelines
,”
Powder Technol.
314
,
490
499
(
2017
).
25.
J. O.
Hinze
, “
Turbulent fluid and particle interaction
,” in
Proceedings of the International Symposium on Two-Phase Systems
(
1972
).
26.
J. A. C.
Humphrey
, “
Fundamentals of fluid motion in erosion by solid particle impact
,”
Int. J. Heat Fluid Flow
11
(
3
),
170
195
(
1990
).
27.
M. S.
Guo
and
H. Z.
Li
,
Handbook of Fluidization
(
Chemical Industry Press Co., Ltd.
,
2008
).
28.
J.
Salik
,
D.
Buckley
, and
W. A.
Brainard
, “
The effect of mechanical surface and heat treatments on the erosion resistance of 6061 aluminum alloy
,”
Wear
65
(
3
),
351
358
(
1981
).
29.
P.
Balu
,
F.
Kong
,
S.
Hamid
, and
R.
Kovacevic
, “
Finite element modeling of solid particle erosion in AISI 4140 steel and nickel-tungsten carbide composite material produced by the laser-based powder deposition process
,”
Tribol. Int.
62
,
18
28
(
2013
).
31.
B. D.
Nandre
and
G. R.
Desale
, “
The effects of constant kinetic energy of different impacting particles on slurry erosion wear of AA 6063
,”
J. Tribol.
140
(
3
),
031605
(
2018
).
32.
S.
Wada
and
N.
Watanabe
, “
Solid particle erosion of brittle materials (part 3)
,”
J. Ceram. Assoc. Jpn.
95
,
573
578
(
1987
).
33.
P. H.
Shipway
and
I. M.
Hutchings
, “
The role of particle properties in the erosion of brittle materials
,”
Wear
193
(
1
),
105
113
(
1996
).
34.
M.
Parsi
,
K.
Najmi
,
F.
Najafifard
,
S.
Hassani
,
B. S.
McLaury
, and
S. A.
Shirazi
, “
A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications
,”
J. Nat. Gas Sci. Eng.
21
,
850
873
(
2014
).
35.
I.
Finnie
, “
Some observations on the erosion of ductile metals
,”
Wear
19
(
1
),
81
90
(
1972
).
36.
K.
Ahlert
, “
Effects of particle impingement angle and surface wetting on solid particle erosion of AISI 1018 steel
,” Ph.D. thesis (
University of Tulsa
,
1994
).
37.
B. S.
Mclaury
, “
Predicting solid particle erosion resulting from turbulent fluctuation in oilfield geometries
,” Ph.D. thesis (
The University of Tulsa
,
Tulsa, Oklahoma
,
1996
).
38.
Y. I.
Oka
,
K.
Okamura
, and
T.
Yoshida
, “
Practical estimation of erosion damage caused by solid particle impact
,”
Wear
259
(
1
),
95
101
(
2005
).
39.
Y.
Zhang
,
E. P.
Reuterfors
,
B. S.
Mclaury
,
S. A.
Shirazi
, and
E. F.
Rybicki
, “
Comparison of computed and measured particle velocities and erosion in water and air flows
,”
Wear
263
,
330
338
(
2007
).
40.
J. H.
Neilson
and
A.
Gilchrist
, “
Erosion by a stream of solid particles
,”
Wear
11
(
2
),
111
122
(
1968
).
41.
W. S.
Peng
and
X. W.
Cao
, “
Numerical simulation of solid particle erosion in pipe bends for liquid-solid flow
,”
Powder Technol.
294
,
266
279
(
2016
).
42.
Z. Y.
Zhou
,
S. B.
Kuang
,
K. W.
Chu
, and
A. B.
Yu
, “
Discrete particle simulation of particle–fluid flow: Model formulations and their applicability
,”
J. Fluid Mech.
661
,
482
510
(
2010
).
43.
M. M.
Zhou
,
S.
Wang
,
S. B.
Kuang
,
K.
Luo
, and
J. R.
Fan
, “
CFD-DEM modelling of hydraulic conveying of solid particles in a vertical pipe
,”
Powder Technol.
354
,
893
905
(
2019
).
44.
S. A.
Shirazi
,
B. S.
McLaury
, and
S.
Karimi
, “
Predicting fine particle erosion utilizing computational fluid dynamics
,”
Wear
376
,
1130
1137
(
2017
).
45.
M.
Parsi
,
M.
Mahdavimanesh
,
A.
Noghrehabadi
, and
G.
Ahmadi
, “
Particle deposition in a turbulent channel flow
,” in
Fluids Engineering Division Summer Meeting
(
2013
).
46.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
(
8
),
1598
1605
(
1994
).
47.
W. S.
Peng
and
X. W.
Cao
, “
Numerical prediction of erosion distributions and solid particle trajectories in elbows for gas-solid flow
,”
J. Nat. Gas Sci. Eng.
30
,
455
470
(
2016
).
48.
S. A.
Morsi
and
A. J.
Alexander
, “
An investigation of particle trajectories in two-phase flow systems
,”
J. Fluid Mech.
55
,
193
(
1972
).
49.
A.
Uzi
and
A.
Levy
, “
Flow characteristics of coarse particles in horizontal hydraulic conveying
,”
Powder Technol.
326
,
302
321
(
2018
).
50.
P. G.
Saffman
, “
The lift on a small sphere in a slow shear flow
,”
J. Fluid Mech.
22
,
385
400
(
1965
).
51.
P. A.
Cundall
and
O. D. L.
Strack
, “
A discrete numerical model for granular assembles
,”
Geotechnique
29
,
47
65
(
1979
).
52.
A.
Haider
and
O.
Levenspiel
, “
Drag coefficient and terminal velocity of spherical and nonspherical particles
,”
Powder Technol.
58
(
1
),
63
70
(
1989
).
53.
M.
Sommerfeld
, “
Best practice guidelines for computational fluid dynamics of dispersed multiphase flows
,” in Ercoftac (
2008
).
54.
C. A. R.
Duarte
,
F. J.
de Souza
,
R. D. V.
Salvo
, and
V. F.
Dos Santos
, “
The role of inter-particle collisions on elbow erosion
,”
Int. J. Multiphase Flow
89
,
1
22
(
2017
).
55.
J. W.
Zhou
,
Y.
Liu
,
S. Y.
Liu
,
C. L.
Du
, and
J. P.
Li
, “
Effects of particle shape and swirling intensity on elbow erosion in dilute-phase pneumatic conveying
,”
Wear
380–381
,
66
77
(
2017
).
56.
T.
Ucar
,
R. D.
Fox
,
H. E.
Ozkan
, and
R. D.
Brazee
, “
Simulation of jet agitation in sprayer tanks: Comparison of predicted and measured water velocities
,”
Trans. ASAE
44
(
2
),
223
230
(
2001
).
57.
Y. J.
Gu
,
H. W.
Liu
,
W.
Li
,
Y. G.
Lin
, and
Y. J.
Li
, “
Integrated design and implementation of 120-kW horizontal-axis tidal current energy conversion system
,”
Ocean Eng.
158
,
338
349
(
2018
).
58.
Y. J.
Gao
,
H. W.
Liu
,
Y. G.
Lin
,
Y. J.
Gu
, and
Y. M.
Ni
, “
Hydrodynamic analysis of tidal current turbine under water-sediment conditions
,”
J. Mar. Sci. Eng.
10
(
4
),
515
(
2022
).
59.
W.
Jia
and
J.
Yan
, “
Pressure drop characteristics and minimum pressure drop velocity for pneumatic conveying of polyacrylamide in a horizontal pipe with bends at both ends
,”
Powder Technol.
372
,
192
203
(
2020
).
60.
A.
Farokhipour
,
Z.
Mansoori
, and
M. A.
Rasoulian
, “
Study of particle mass loading effects on sand erosion in a series of fittings
,”
Powder Technol.
373
,
118
141
(
2020
).
61.
Y. R.
Li
,
J. J.
Jin
,
W.
Han
,
D. S.
Li
, and
L. K.
Zheng
, “
Motion characteristics of diffuser diameter particles in flow field of S809 airfoil and effect of its aerodynamic performance
,”
Acta Energ. Sol. Sin.
39
,
2923
2928
(
2018
).
62.
R. N.
Li
,
Z. X.
Zhao
,
D. S.
Li
, and
Y. R.
Li
, “
Effect of wind sand on flow around airfoil of wind turbine and its aerodynamic performance
,”
Trans. Chin. Soc. Agric. Eng.
34
,
205
211+303
(
2018
).
63.
Y. Y.
An
,
Aerodynamics Technology of Aeronautics
(
Aviation Industry Press
,
Beijing
,
2013
).
64.
A.
Muratoglu
,
R.
Tekin
, and
O. F.
Ertugrul
, “
Hydrodynamic optimization of high-performance blade sections for stall regulated hydrokinetic turbines using differential evolution algorithm
,”
Ocean Eng.
220
,
108389
(
2021
).
65.
P. A.
Silva
,
L. D.
Shinomiya
,
T. F.
Oliveira
,
J. R. P.
Vaz
,
A. L. A.
Mesquita
, and
A. C. P.
Brasil
, “
Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM
,”
Appl. Energy
185
,
1281
1291
(
2017
).
You do not currently have access to this content.