Solar thermal electricity generation is one of the encouraging technologies for reducing scarcity of electricity worldwide in a renewable and sustainable manner. Solar organic Rankine cycles (SORCs) are sustainable and an eco-friendly means of power production at low- and medium-heat source temperatures. The proposed system includes a parabolic trough collector based solar system, which operates with Therminol VP-1 oil, a two-tank direct thermal energy storage unit, and an organic Rankine cycle (ORC) operates with a working fluid Toluene. Improvement in efficiencies of components has a cascading benefit in the performance of SORC, operating costs, and payback period. A comparative energy and exergy analysis study is performed to assess the thermodynamic performance of subcritical non-recuperative solar organic Rankine cycle on the basis of heat source temperatures and ORC operating parameters. Iterative procedure is adapted in the analysis to find optimal operating parameters to maximize efficiency. Maximum energetic and exergetic efficiencies of SORC are calculated at various optimal T5 and pevp. Variations of optimal mass flow rate values with respect to time and ηI, ηII with respect to heat source temperatures are plotted. In all, the energy efficiency of the overall system remained almost the same, when the proposed system is operated at the exergy-based vs energy-based optimal operating conditions. However, significant enhancement of 6.61% and 12.42% in exergetic efficiency of ORC and overall system, respectively, are observed when SORC operates at exergy-based optimal operating conditions.

1.
Z.
Han
,
J.
Wang
,
H.
Chen
, and
J.
Wang
, “
Thermodynamic performance analysis and optimization for a novel full-spectrum solar-driven trigeneration system integrated with organic Rankine cycle
,”
Energy Convers. Manage.
245
,
114626
(
2021
).
2.
E. G.
Bennouna
,
A.
Mimet
, and
H.
Frej
, “
Benefits of production extension and shifting with thermal storage for a 1MW CSP-ORC plant in Morocco
,”
AIP Conf. Proc.
1734
,
050007
(
2016
).
3.
M.
Petrollese
and
D.
Cocco
, “
Robust optimization for the preliminary design of solar organic Rankine cycle (ORC) systems
,”
Energy Convers. Manage.
184
,
338
349
(
2019
).
4.
S.
Li
,
H.
Ma
, and
W.
Li
, “
Dynamic performance analysis of solar organic Rankine cycle with thermal energy storage
,”
Appl. Therm. Eng.
129
,
155
164
(
2018
).
5.
Y. A.
Çengel
,
M. A.
Boles
, and
M.
Kanoğlu
,
Thermodynamics: An Engineering Approach
, 9th ed. (McGraw-Hill Education,
2019
).
6.
S. A.
Kalogirou
, “
Solar thermal collectors and applications
,”
Prog. Energy Combust. Sci.
30
(
3
),
231
295
(
2004
).
7.
Y.
Krishna
,
M.
Faizal
,
R.
Saidur
,
K. C.
Ng
, and
N.
Aslfattahi
, “
State-of-the-art heat transfer fluids for parabolic trough collector
,”
Int. J. Heat Mass Transfer
152
,
119541
(
2020
).
8.
F.
Mertkan Arslan
,
H.
Günerhan
,
P.
Krishnamurthy
,
S.
Mishra
, and
R.
Banerjee
, “
Investigation of energetic and exergetic performances of parabolic trough collector with using different heat transfer fluids”
(EDP Sciences - Web of Conferences,
2019
), Vol.
111
, pp.
407
419
.
9.
P.
Krishnamurthy
,
S.
Mishra
, and
R.
Banerjee
, “
An analysis of costs of parabolic trough technology in India
,”
Energy Policy
48
,
407
419
(
2012
).
10.
A.
Kumar
,
M.
Sharma
,
P.
Thakur
,
V. K.
Thakur
,
S. S.
Rahatekar
, and
R.
Kumar
, “
A review on exergy analysis of solar parabolic collectors
,”
Sol. Energy
197
,
411
432
(
2020
).
11.
K.
Metwally
,
A.
Makhlouf
, and
L.
El-Gabry
, “
Approach to designing a solar concentrator for small-scale remote power application
,”
J. Renewable Sustainable Energy
3
(
6
),
1
12
(
2011
).
12.
R.
Petela
, “
Exergy of undiluted thermal radiation
,”
Sol. Energy
74
(
6
),
469
488
(
2003
).
13.
N.
Abed
,
I.
Afgan
,
A.
Cioncolini
,
H.
Iacovides
, and
A.
Nasser
, “
Assessment and evaluation of the thermal performance of various working fluids in parabolic trough collectors of solar thermal power plants under non-uniform heat flux distribution conditions
,”
Energies
13
(
15
),
1
27
(
2020
).
14.
K.
Ikhlef
and
S.
Larbi
, “
Techno-economic optimization for implantation of parabolic trough power plant: Case study of Algeria
,”
J. Renewable Sustainable Energy
12
(
6
),
063704
(
2020
).
15.
H.
Benoit
,
L.
Spreafico
,
D.
Gauthier
, and
G.
Flamant
, “
Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients
,”
Renewable Sustainable Energy Rev.
55
,
298
315
(
2016
).
16.
B.
Loeffler
and
E.
Whitney
, “
An Alaska case study: Organic Rankine cycle technology
,”
J. Renewable Sustainable Energy
9
(
6
),
061707
(
2017
).
17.
H.
Yağlı
,
Y.
Koç
, and
H.
Kalay
, “
Optimisation and exergy analysis of an organic Rankine cycle (ORC) used as a bottoming cycle in a cogeneration system producing steam and power
,”
Sustainable Energy Technol. Assess.
44
,
100985
(
2021
).
18.
Y.
Gu
and
Z.
Geng
, “
Comprehensive evaluation of supercritical power cycle system using non-azeotropic mixtures driven by medium-temperature solar heat source
,”
J. Renewable Sustainable Energy
10
(
6
),
064706
(
2018
).
19.
R.
Loni
 et al., “
A review of solar-driven organic Rankine cycles: Recent challenges and future outlook
,”
Renewable Sustainable Energy Rev.
150
,
111410
(
2021
).
20.
X.
Dai
,
L.
Shi
,
Q.
An
, and
W.
Qian
, “
Screening of working fluids and metal materials for high temperature organic Rankine cycles by compatibility
,”
J. Renewable Sustainable Energy
9
(
2
),
024702
(
2017
).
21.
R.
Rayegan
and
Y. X.
Tao
, “
A procedure to select working fluids for solar Organic Rankine Cycles (ORCs)
,”
Renewable Energy
36
(
2
),
659
670
(
2011
).
22.
H.
Chen
,
D. Y.
Goswami
, and
E. K.
Stefanakos
, “
A review of thermodynamic cycles and working fluids for the conversion of low-grade heat
,”
Renewable Sustainable Energy Rev.
14
(
9
),
3059
3067
(
2010
).
23.
B.
Saleh
,
G.
Koglbauer
,
M.
Wendland
, and
J.
Fischer
, “
Working fluids for low-temperature organic Rankine cycles
,”
Energy
32
(
7
),
1210
1221
(
2007
).
24.
N. B.
Desai
and
S.
Bandyopadhyay
, “
Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle
,”
Appl. Therm. Eng.
95
,
471
481
(
2016
).
25.
R.
Chacartegui
,
L.
Vigna
,
J. A.
Becerra
, and
V.
Verda
, “
Analysis of two heat storage integrations for an organic Rankine cycle parabolic trough solar power plant
,”
Energy Convers. Manage.
125
,
353
367
(
2016
).
26.
P.
Kolasiński
, “
Experimental and modelling studies on the possible application of heat storage devices for powering the ORC (organic Rankine cycle) systems
,”
Therm. Sci. Eng. Prog.
19
,
100586
(
2020
).
27.
E. G.
Bennouna
,
A.
Mimet
, and
A.
Mimet
, “
Numerical investigation of medium grade sensible and latent heat storage system for small scale CSP plants
,”
J. Renewable Sustainable Energy
12
(
5
),
054103
(
2020
).
28.
Q.
Yu
,
X.
Li
,
Z.
Wang
, and
Q.
Zhang
, “
Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant
,”
Energy
198
,
117183
(
2020
).
29.
D.
Cocco
and
F.
Serra
, “
Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1MWe class concentrating solar power plants
,”
Energy
81
,
526
536
(
2015
).
30.
B. F.
Tchanche
,
G.
Lambrinos
,
A.
Frangoudakis
, and
G.
Papadakis
, “
Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system
,”
Appl. Energy
87
(
4
),
1295
1306
(
2010
).
31.
J.
Wang
,
Z.
Yan
,
P.
Zhao
, and
Y.
Dai
, “
Off-design performance analysis of a solar-powered organic Rankine cycle
,”
Energy Convers. Manage.
80
,
150
157
(
2014
).
32.
K. M.
Bataineh
, “
Optimisation analysis of solar powered organic Rankine cycle system
,”
IET Renewable Power Gener.
11
(
2
),
342
350
(
2017
).
33.
B. R.
Fu
,
S. W.
Hsu
,
Y. R.
Lee
,
J. C.
Hsieh
,
C. M.
Chang
, and
C. H.
Liu
, “
Effect of off-design heat source temperature on heat transfer characteristics and system performance of a 250-kW organic Rankine cycle system
,”
Appl. Therm. Eng.
70
(
1
),
7
12
(
2014
).
34.
Z.
He
 et al., “
Thermodynamic analysis of a low-temperature organic Rankine cycle power plant operating at off-design conditions
,”
Appl. Therm. Eng.
113
,
937
951
(
2017
).
35.
E.
Askari-Asli Ardeh
,
R.
Loni
,
G.
Najafi
,
B.
Ghobadian
,
E.
Bellos
, and
D.
Wen
, “
Exergy and economic assessments of solar organic Rankine cycle system with linear V-shape cavity
,”
Energy Convers. Manage.
199
,
111997
(
2019
).
36.
N.
Singh
,
S. C.
Kaushik
, and
R. D.
Misra
, “
Exergetic analysis of a solar thermal power system
,”
Renewable Energy
19
(
1–2
),
135
143
(
2000
).
37.
J.
Yang
,
J.
Li
,
Z.
Yang
, and
Y.
Duan
, “
Thermodynamic analysis and optimization of a solar organic Rankine cycle operating with stable output
,”
Energy Convers. Manage.
187
,
459
471
(
2019
).
38.
H.
Yu
,
H.
Helland
,
X.
Yu
,
T.
Gundersen
, and
G.
Sin
, “
Optimal design and operation of an Organic Rankine Cycle (ORC) system driven by solar energy with sensible thermal energy storage
,”
Energy Convers. Manage.
244
,
114494
(
2021
).
39.
Y.
You
and
E. J.
Hu
, “
A medium-temperature solar thermal power system and its efficiency optimisation
,”
Appl. Therm. Eng.
22
(
4
),
357
364
(
2002
).
40.
D.
Tiwari
,
A. F.
Sherwani
,
A.
Arora
, and
A.
Haleem
, “
Thermo-economic and multiobjective optimization of saturated and superheated organic Rankine cycle using a low-grade solar heat source
,”
J. Renewable Sustainable Energy
9
(
5
),
054701
(
2017
).
41.
G.
Gao
,
J.
Li
,
P.
Li
,
H.
Yang
,
G.
Pei
, and
J.
Ji
, “
Design and analysis of an innovative concentrated solar power system using cascade organic Rankine cycle and two-tank water/steam storage
,”
Energy Convers. Manage.
237
,
114108
(
2021
).
42.
J.
Li
,
Q.
Liu
,
Z.
Ge
,
Y.
Duan
, and
Z.
Yang
, “
Thermodynamic performance analyses and optimization of subcritical and transcritical organic Rankine cycles using R1234ze(E) for 100–200 °C heat sources
,”
Energy Convers. Manage.
149
,
140
154
(
2017
).
43.
J.
Freeman
,
I.
Guarracino
,
S. A.
Kalogirou
, and
C. N.
Markides
, “
A small-scale solar organic Rankine cycle combined heat and power system with integrated thermal energy storage
,”
Appl. Therm. Eng.
127
,
1543
1554
(
2017
).
44.
A.
Hublitz
,
M.
Spinnler
,
L.
Thermodynamik
, and
T. U.
München
, “
Technical comparison of different solar-
assisted
heat supply systems for a multi-effect seawater distillation unit
,” in
ISES Solar World Congress
(ISES,
2003
), pp.
14
19
.
45.
Y. M. A.
Manaserh
,
A. M.
Abubaker
,
A. D.
Ahmad
,
A. B.
Ata
,
Y. S. H.
Najjar
, and
N. K.
Akafuah
, “
Assessment of integrating hybrid solar-combined cycle with thermal energy storage for shaving summer peak load and improving sustainability
,”
Sustainable Energy Technol. Assess.
47
,
101505
(
2021
).
46.
A.
Bejan
, “
Unification of three different theories concerning the ideal conversion of enclosed radiation
,”
J. Sol. Energy Eng. Trans. ASME
109
(
1
),
46
51
(
1987
).
47.
R.
Petela
, “
Exergy of heat radiation
,”
J. Heat Transfer
86
(
2
),
187
192
(
1964
).
48.
M.
Bahrami
,
A. A.
Hamidi
, and
S.
Porkhial
, “
Investigation of the effect of organic working fluids on thermodynamic performance of combined cycle stirling-ORC
,”
Int. J. Energy Environ. Eng.
4
(
1
),
1
9
(
2013
).
49.
C. M.
Invernizzi
,
P.
Iora
,
G.
Manzolini
, and
S.
Lasala
, “
Thermal stability of n-pentane, cyclo-pentane and toluene as working fluids in organic Rankine engines
,”
Appl. Therm. Eng.
121
,
172
179
(
2017
).
50.
Z.
Xi
,
S.
Eshaghi
, and
F.
Sardari
, “
Energy, exergy, and exergoeconomic analysis of a polygeneration system driven by solar energy with a thermal energy storage tank for power, heating, and freshwater production
,”
J. Energy Storage
36
,
102429
(
2021
).
51.
R. M.
Orsini
,
P. G.
Brodrick
,
A. R.
Brandt
, and
L. J.
Durlofsky
, “
Computational optimization of solar thermal generation with energy storage
,”
Sustainable Energy Technol. Assess.
47
,
101342
(
2021
).
52.
S.
ed-Dîn Fertahi
,
A.
Jamil
, and
A.
Benbassou
, “
Review on Solar Thermal Stratified Storage Tanks (STSST): Insight on stratification studies and efficiency indicators
,”
Sol. Energy
176
,
126
145
(
2018
).
53.
B. F.
Tchanche
,
G.
Papadakis
,
G.
Lambrinos
, and
A.
Frangoudakis
, “
Fluid selection for a low-temperature solar organic Rankine cycle
,”
Appl. Therm. Eng.
29
(
11–12
),
2468
2476
(
2009
).
54.
P. J.
Mago
,
L. M.
Chamra
,
K.
Srinivasan
, and
C.
Somayaji
, “
An examination of regenerative organic Rankine cycles using dry fluids
,”
Appl. Therm. Eng.
28
,
998
1007
(
2008
).
55.
F.
Aziz
,
R.
Mudasar
, and
M.
Kim
, “
Exergetic and heat load optimization of high temperature organic Rankine cycle
,”
Energy Convers. Manage.
171
,
48
58
(
2018
).
56.
A.
Nemati
,
H.
Nami
,
F.
Ranjbar
, and
M.
Yari
, “
A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: A case study for CGAM cogeneration system
,”
Case Stud. Therm. Eng.
9
,
1
13
(
2016
).
You do not currently have access to this content.