Performance of offshore wind farms built in the nearshore region will be affected by onshore terrain with higher turbulence in the flow when wind is blowing from land toward sea. Current study employs large-eddy simulation to investigate the effect of coastal terrain on the performance of large nearshore offshore wind farms. At first, two atmospheric boundary layer (ABL) simulation cases are defined to investigate the evolution of an internal boundary layer (IBL) during the sea-to-land and land-to-sea transition of the flow. The growth rate of the IBL was similar for both ABL simulation cases. However, the mean velocity-based definition of IBL heights, which essentially are the equilibrium layer, were half the height of shear stress-based IBLs. The first wind farm simulation case only considers an offshore surface, while the second case includes the region with land-to-sea transition upstream of the wind farm. Better wake recovery is observed in the case that considers the effect of onshore terrain. This is attributed to the higher inflow turbulence level, which resulted in higher entrainment of kinetic energy from the flow above. The farm-induced IBL for a land-to-sea transition case shows rapid growth for the first few turbine rows, while the offshore only case shows gradual growth. However, the difference between the two IBLs decreases with downstream distance, implying that for sufficiently long wind farms, both IBLs will converge. Total power output of the land-to-sea transition case is 17% higher than the offshore only case for the farm layout and roughness heights considered in this study.

1.
J.
Lee
and
F.
Zhao
,
Global Wind Report 2021
[
Global Wind Energy Council (GWEC)
,
Brussels, Belgium
,
2021
].
2.
Floating Offshore Wind Energy the Next Generation of Wind Energy
, edited by
J.
Cruz
and
M.
Atcheson
(
Springer
,
Switzerland
,
2016
).
3.
Y.
Kikuchi
,
M.
Fukushima
, and
T.
Ishihara
, “
Assessment of a coastal off shore wind climate by means of mesoscale model simulations considering high-resolution land use and sea surface temperature data sets
,”
Atmosphere
11
,
379
(
2020
).
4.
J. P.
Goit
,
A.
Yamaguchi
, and
T.
Ishihara
, “
Measurement and prediction of wind fields at an offshore site by scanning Doppler LiDAR and WRF
,”
Atmosphere
11
,
442
(
2020
).
5.
S.
Shimada
,
J. P.
Goit
,
T.
Ohsawa
,
T.
Kogaki
, and
S.
Nakamura
, “
Coastal wind measurements using a single scanning LiDAR
,”
Remote Sens.
12
,
1347
(
2020
).
6.
S.
Shimada
,
T.
Kogaki
,
M.
Konagaya
,
T.
Mito
,
R.
Araki
,
Y.
Ueda
, and
T.
Ohsawa
, “
Validation of near-shore wind measurements using a dual scanning light detection and ranging system
,”
Wind Energy
25
,
1555
1572
(
2022
).
7.
J. R.
Garratt
, “
The internal boundary layer: A review
,”
Boundary-Layer Meteorol.
50
,
171
203
(
1990
).
8.
S. A.
Savelyev
and
P. A.
Taylor
, “
Internal boundary layers: I. Height formulae for neutral and diabatic flows
,”
Boundary-Layer Meteorol.
115
,
1
25
(
2005
).
9.
E. F.
Bradley
, “
A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness
,”
Q. J. R. Meteorol. Soc.
94
,
361
379
(
1968
).
10.
C. C.
Shir
, “
A numerical computation of air flow over a sudden change of surface roughness
,”
J. Atmos. Sci.
29
,
304
310
(
1972
).
11.
E.
Bou-Zeid
,
C.
Meneveau
, and
M. B.
Parlange
, “
A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows
,”
Phys. Fluids
17
,
025105
(
2005
).
12.
L. P.
Chamorro
and
F.
Porté-Agel
, “
Velocity and surface shear stress distributions behind a rough-to-smooth surface transition: A simple new model
,”
Boundary-Layer Meteorol.
130
,
29
41
(
2009
).
13.
R. A.
Antonia
and
R. E.
Luxton
, “
The response of a turbulent boundary layer to a step change in surface roughness. Part 1. Smooth-to-rough
,”
J. Fluid Mech.
48
,
721
761
(
1971
).
14.
R. A.
Antonia
and
R. E.
Luxton
, “
The response of a turbulent boundary layer to a step change in surface roughness. Part 2. Rough-to-smooth
,”
J. Fluid Mech.
53
,
737
757
(
1972
).
15.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind-turbine array boundary layers
,”
Phys. Fluids
22
,
015110
(
2010
).
16.
R. J. A. M.
Stevens
and
C.
Meneveau
, “
Flow structure and turbulence in wind farms
,”
Annu. Rev. Fluid Mech.
49
,
311
339
(
2016
).
17.
F.
Porté-Agel
,
M.
Bastankhah
, and
S.
Shamsoddin
, “
Wind-turbine and wind-farm flows: A review
,”
Boundary-Layer Meteorol.
174
,
1
59
(
2019
).
18.
C.
Meneveau
and
J.
Katz
, “
Scale-invariance and turbulence models for large-eddy simulation
,”
Annu. Rev. Fluid Mech.
32
,
1
32
(
2000
).
19.
U.
Piomelli
and
E.
Balaras
, “
Wall-layer models for large-eddy simulations
,”
Annu. Rev. Fluid Mech.
34
,
349
(
2002
).
20.
A. S.
Monin
and
A. M.
Obukhov
, “
Basic laws of turbulent mixing in the surface layer of the atmosphere
,”
Contrib. Geophys. Inst. Acad. Sci. USSR
24
(
151
),
163
187
(
1954
).
21.
C.-H.
Moeng
, “
A large-eddy simulation model for the study of planetary boundary-layer turbulence
,”
J. Atmos. Sci.
41
,
2052
2062
(
1984
).
22.
J. P.
Goit
and
J.
Meyers
, “
Optimal control of energy extraction in wind-farm boundary layers
,”
J. Fluid Mech.
768
,
5
50
(
2015
).
23.
J. P.
Goit
,
W.
Munters
, and
J.
Meyers
, “
Optimal coordinated control of power extraction in LES of a wind farm with entrance effects
,”
Energies
9
(
1
),
29
(
2016
).
24.
F.
Porté-Agel
,
Y. T.
Wu
, and
C. H.
Chen
, “
A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm
,”
Energies
6
,
5297
5313
(
2013
).
25.
M. L.
Aitken
,
M. E.
Rhodes
, and
J. K.
Lundquist
, “
Performance of a wind-profiling lidar in the region of wind turbine rotor disks
,”
J. Atmos. Oceanic Technol.
29
,
347
355
(
2012
).
26.
M.
Abkar
and
F.
Porté-Agel
, “
Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study
,”
Phys. Fluids
27
,
035104
(
2015
).
27.
N. S.
Ghaisas
,
C. L.
Archer
,
S.
Xie
,
S.
Wu
, and
E.
Maguire
, “
Evaluation of layout and atmospheric stability effects in wind farms using large-eddy simulation
,”
Wind Energy
20
,
1227
1240
(
2017
).
28.
M.
Calaf
,
C.
Higgins
, and
M. B.
Parlange
, “
Large wind farms and the scalar flux over an heterogeneously rough land surface
,”
Boundary-Layer Meteorol.
153
,
471
495
(
2014
).
29.
M. J.
Churchfield
,
S.
Lee
,
J.
Michalakes
, and
P. J.
Moriarty
, “
A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics
,”
J. Turbul.
13
,
1
32
(
2012
).
30.
X.
Yang
and
F.
Sotiropoulos
, “
A review on the meandering of wind turbine wakes
,”
Energies
12
,
4725
(
2019
).
31.
C.
VerHulst
and
C.
Meneveau
, “
Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms
,”
Phys. Fluids
26
,
025113
(
2014
).
32.
A.
Önder
and
J.
Meyers
, “
On the interaction of very-large-scale motions in a neutral atmospheric boundary layer with a row of wind turbines
,”
J. Fluid Mech.
841
,
1040
1072
(
2018
).
33.
T.
Chatterjee
and
Y. T.
Peet
, “
Streamwise inhomogeneity of spectra and vertical coherence of turbulent motions in a finite-size wind farm
,”
Phys. Rev. Fluids
6
,
114601
(
2021
).
34.
P. P.
Sullivan
and
J. C.
McWilliams
, “
Dynamics of winds and currents coupled to surface waves
,”
Annu. Rev. Fluid Mech.
42
,
19
42
(
2010
).
35.
G.
Deskos
,
J. C. Y.
Lee
,
C.
Draxl
, and
M. A.
Sprague
, “
Review of wind–wave coupling models for large-eddy simulation of the marine atmospheric boundary layer
,”
J. Atmos. Sci.
78
,
3025
3045
(
2021
).
36.
J. B.
Edson
and
C. W.
Fairall
, “
Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets
,”
J. Atmos. Sci.
55
,
2311
2328
(
1998
).
37.
J. B.
Edson
,
V.
Jampana
,
R. A.
Weller
,
S. P.
Bigorre
,
A. J.
Plueddemann
,
C. W.
Fairall
,
S. D.
Miller
,
L.
Mahrt
,
D.
Vickers
, and
H.
Hersbach
, “
On the exchange of momentum over the open ocean
,”
J. Phys. Oceanogr.
43
,
1589
1610
(
2013
).
38.
H.
Charnock
, “
Wind stress on a water surface
,”
Q. J. R. Meteorol. Soc.
81
,
639
640
(
1955
).
39.
J. R.
Garratt
,
The Atmospheric Boundary Layer: Cambridge Atmospheric and Space Science Series
(
Cambridge University Press
,
Cambridge
,
1994
).
40.
T. E.
Nordeng
, “
On the wave age dependent drag coefficient and roughness length at sea
,”
J. Geophys. Res.
96
,
7167
(
1991
).
41.
P. K.
Taylor
and
M. J.
Yelland
, “
The dependence of sea surface roughness on the height and steepness of the waves
,”
J. Phys. Oceanogr.
31
,
572
590
(
2001
).
42.
P. P.
Sullivan
,
J. B.
Edson
,
T.
Hristov
, and
J. C.
McWilliams
, “
Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves
,”
J. Atmos. Sci.
65
,
1225
1245
(
2008
).
43.
Q.
Jiang
,
P.
Sullivan
,
S.
Wang
,
J.
Doyle
, and
L.
Vincent
, “
Impact of swell on air–sea momentum flux and marine boundary layer under low-wind conditions
,”
J. Atmos. Sci.
73
,
2683
2697
(
2016
).
44.
K.
Nilsson
,
S.
Ivanell
,
K. S.
Hansen
,
R.
Mikkelsen
,
J. N.
Sørensen
,
S.-P.
Breton
, and
D.
Henningson
, “
Large-eddy simulations of the Lillgrund wind farm
,”
Wind Energy
18
,
449
467
(
2015
).
45.
A.
AlSam
,
R.
Szasz
, and
J.
Revstedt
, “
The influence of sea waves on offshore wind turbine aerodynamics
,”
J. Energy Res. Technol.
137
,
051209
(
2015
).
46.
A.
Calderer
,
X.
Guo
,
L.
Shen
, and
F.
Sotiropoulos
, “
Fluid–structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines
,”
J. Comput. Phys.
355
,
144
175
(
2018
).
47.
H.
Yang
,
M.
Ge
,
B.
Gu
,
B.
Du
, and
Y.
Liu
, “
The effect of swell on marine atmospheric boundary layer and the operation of an offshore wind turbine
,”
Energy
244
,
123200
(
2022
).
48.
O.
Ferčák
,
J.
Bossuyt
,
N.
Ali
, and
R. B.
Cal
, “
Decoupling wind–wave–wake interactions in a fixed-bottom offshore wind turbine
,”
Appl. Energy
309
,
118358
(
2022
).
49.
D.
Yang
,
C.
Meneveau
, and
L.
Shen
, “
Effect of swells on offshore wind energy harvesting: A large-eddy simulation study
,”
Renewable Energy
70
,
11
23
(
2014
).
50.
D.
Yang
,
C.
Meneveau
, and
L.
Shen
, “
Large-eddy simulation of off-shore wind farm
,”
Phys. Fluids
26
,
025101
(
2014
).
51.
A.
AlSam
,
R.
Szasz
, and
J.
Revstedt
, “
Wind–wave interaction effects on a wind farm power production
,”
J. Energy Res. Technol.
139
,
051213
(
2017
).
52.
H.
Yang
,
M.
Ge
,
M.
Abkar
, and
X. I. A.
Yang
, “
Large-eddy simulation study of wind turbine array above swell sea
,”
Energy
256
,
124674
(
2022
).
53.
D. G.
Dommermuth
and
D. K. P.
Yue
, “
A high-order spectral method for the study of nonlinear gravity waves
,”
J. Fluid Mech.
184
,
267
288
(
1987
).
54.
ESI
, https://www.openfoam.com. for “
OpenFOAM.
55.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity
,”
Flow, Turbul. Combust.
62
,
183
200
(
1999
).
56.
J. F.
Manwell
,
J. G.
McGowan
, and
A. L.
Rogers
,
Wind Energy Explained: Theory, Design and Application
(
John Wiley & Sons
,
2009
).
57.
R.
Mikkelsen
, “
Actuator disc methods applied to wind turbines
,” Ph.D. thesis (
Department of Mechanical Engineering, Technical University of Denmark
,
2003
).
58.
A.
Önder
and
J. P.
Goit
,
“windTurbineModels: an OpenFOAM package with basic wind turbine models for wind farm simulations
,” see https://github.com/asimonder/windTurbineModels for source code (last accessed March 8, 2022).
59.
T.
Mukha
,
S.
Rezaeiravesh
, and
M.
Liefvendahl
, “
A library for wall-modelled large-eddy simulation based on OpenFOAM technology
,”
Comput. Phys. Commun.
239
,
204
224
(
2019
).
60.
T.
Burton
,
D.
Sharpe
,
N.
Jenkins
, and
E.
Bossanyi
,
Wind Energy Handbook
(
John Wiley & Sons
,
2001
).
61.
J.
Jonkman
,
S.
Butterfield
,
W.
Musial
, and
G.
Scott
, “
Definition of a 5-MW reference wind turbine for offshore system development
,” Technical Report No. NREL/TP-500-38060 (
National Renewable Energy Laboratory
,
Cole Boulevard, Golden, Colorado
,
2009
).
62.
P. A.
Taylor
, “
The planetary boundary layer above a change in surface roughness
,”
J. Atmos. Sci.
26
,
432
440
(
1969
).
63.
A.
Segalini
and
M.
Chericoni
, “
Boundary-layer evolution over long wind farms
,”
J. Fluid Mech.
925
,
A2
(
2021
).
64.
W. P.
Elliot
, “
The growth of the atmospheric internal boundary layer
,”
Trans. Am. Geophys. Union
39
,
1048
1054
(
1958
).
65.
M.
Miyake
,
Transformation of the Atmospheric Boundary Layer over Inhomogeneous Surfaces
(
Department of Atmospheric Sciences
,
University of Washington
,
1965
).
66.
D. H.
Wood
, “
Internal boundary-layer growth following a change in surface roughness
,”
Boundary-Layer Meteorol.
22
,
241
244
(
1982
).
67.
H. A.
Panofsky
and
J. A.
Dutton
,
Atmospheric Turbulence: Models and Methods for Engineering Applications
, 1st ed. (
Wiley-Interscience
,
1984
).
68.
O. O.
Jegede
and
T.
Foken
, “
Study of the internal boundary layer due to a roughness change in neutral conditions observed during the LINEX field campaigns
,”
Theor. Appl. Climatol.
62
,
31
41
(
1999
).
You do not currently have access to this content.