The utility of small wind turbines (SWTs) covering horizontal and vertical-axis types as off-grid, standalone, and decentralized energy supplement systems has gained market attention. Such turbines operate primarily at low Reynolds number (Re) and low tip speed ratio (λ) conditions. Under such circumstances, the design, development, and testing of SWTs have become a tedious task, mainly due to the lack of precise aerodynamic knowledge of SWTs. This article reviews the fundamental aspects of SWTs, including airfoil selection criteria, blade design, and aerodynamic improvement through passive flow control and augmentation techniques. It also reports several classes of potential airfoils that can be employed in the design of SWTs. The airfoils considered operate mainly in the range of Re = 0.3 × 105–3 × 105 and λ = 0.5–6. Aside from the classical approach, this article showcases the prospects of several bioinspired profiles/shapes that are meant for SWTs operating at low Re and λ conditions. Toward the end, various design constraints and applicability of SWTs are summarized.

1.
International Energy Agency
,
World Energy Outlook
(
IEA
,
Paris
,
2021
).
2.
M. D.
Esteban
,
J.-S.
López-Gutiérrez
,
V.
Negro
,
C.
Matutano
,
F. M.
García-Flores
, and
M. Á.
Millán
, “
Offshore wind foundation design: Some key issues
,”
ASME J. Energy Resour. Technol.
137
(
5
),
051211
(
2015
).
3.
H.
Díaz
and
C. G.
Soares
, “
Review of the current status, technology and future trends of offshore wind farms
,”
Ocean Eng.
209
,
107381
(
2020
).
4.
O.
Siram
,
U. K.
Saha
, and
N.
Sahoo
, “
Changing landscape of india's renewable energy and the contribution of wind energy
,”
Cleaner Eng. Technol.
8
,
100506
(
2022
).
5.
P.
Hevia-Koch
and
H. K.
Jacobsen
, “
Comparing offshore and onshore wind development considering acceptance costs
,”
Energy Policy
125
,
9
19
(
2019
).
6.
L.
Nguyen
and
M.
Metzger
, “
Optimization of a vertical-axis wind turbine for application in an urban/suburban area
,”
J. Renewable Sustainable Energy
9
,
043302
(
2017
).
7.
A.
Tummala
,
R. K.
Velamati
,
D. K.
Sinha
,
V.
Indraja
, and
V. H.
Krishna
, “
A review on small scale wind turbines
,”
Renewable Sustainable Energy Rev.
56
,
1351
1371
(
2016
).
8.
S.
Jain
and
U. K.
Saha
, “
The state-of-the-art technology of H-type darrieus wind turbine rotor
,”
ASME J. Energy Resou. Technol.
142
(
3
),
030801
(
2019
).
9.
O.
Siram
,
N.
Kesharwani
,
N.
Sahoo
, and
U. K.
Saha
, “
Aerodynamic design and wind tunnel tests of small-scale horizontal-axis wind turbines for low tip speed ratio application
,”
ASME J. Sol. Energy Eng.
144
(
4
),
041009
(
2022
).
10.
K. W. V.
Treuren
, “
Small-scale wind turbine testing in wind tunnels under low Reynolds number conditions
,”
ASME J. Energy Resources Technol.
137
(
5
),
051208
(
2015
).
11.
Z.
Zhao
,
D.
Su
,
T.
Wang
,
B.
Xu
,
H.
Wu
, and
Y.
Zheng
, “
A blade pitching approach for vertical-axis wind turbines based on the free vortex method
,”
J. Renewable Sustainable Energy
11
,
053301
(
2019
).
12.
S.
Sun
,
D.
Luo
,
D.
Huang
, and
G.
Wu
, “
Numerical study on coupling effects among multiple savonius turbines
,”
J. Renewable Sustainable Energy
4
,
053107
(
2012
).
13.
M.
Neagoe
,
R.
Saulescu
,
C.
Jaliu
, and
P. A.
Simionescu
, “
A generalized approach to the steady-state efficiency analysis of torque-adding transmissions used in renewable energy systems
,”
Energies
13
,
4568
(
2020
).
14.
M.
Casini
, “
Small vertical axis wind turbines for energy efficiency of buildings
,”
J. Clean Energy Technol.
4
,
56
65
(
2016
).
15.
A.
Dilimulati
,
T.
Stathopoulos
, and
M.
Parashivoiu
, “
Wind turbine designs for urban applications: A case study of shrouded diffuser casing for turbines
,”
J. Wind Eng. Ind. Aerodyn.
175
,
179
192
(
2018
).
16.
L.
Chen
,
F. L.
Ponta
, and
L. I.
Lago
, “
Perspectives on innovative concepts in wind-power generation
,”
Energy Sustainable Dev.
15
(
4
),
398
410
(
2011
).
17.
S.
Costello
,
C.
Costello
,
G.
François
, and
D.
Bonvin
, “
Analysis of the maximum efficiency of Kite-power systems
,”
J. Renewable Sustainable Energy
7
,
053108
(
2015
).
18.
C.
Wang
and
R. G.
Prinn
, “
Potential climatic impacts and reliability of very large-scale wind farms
,”
Atmos. Chem. Phys.
10
(
4
),
2053
2061
(
2010
).
19.
B. H.
Fiedler
and
M. S.
Bukovsky
, “
The effect of a giant wind farm on precipitation in a regional climate model
,”
Environ. Res. Lett.
6
(
4
),
045101
(
2011
).
20.
S.
Keivanpour
,
A.
Ramudhin
, and
D. A.
Kadi
, “
The sustainable worldwide offshore wind energy potential: A systematic review
,”
J. Renewable Sustainable Energy
9
,
065902
(
2017
).
21.
T.
Guo
,
X.
Guo
,
Z.
Gao
,
S.
Li
,
X.
Zheng
,
X.
Gao
,
R.
Li
,
T.
Wang
,
Y.
Li
, and
D.
Li
, “
Nacelle and tower effect on a stand-alone wind turbine energy output—A discussion on field measurements of a small wind turbine
,”
Appl. Energy
303
,
117590
(
2021
).
22.
A.
Orrell
,
K.
Kazimierczuk
, and
L.
Sheridan
, “
Distributed Wind Market Report: 2020 Edition
,”
Report
No. PNNL-31729 (
U.S. Department of Energy
,
2021
).
23.
P.
Zhao
,
W.
Xu
,
S.
Zhang
,
J.
Wang
, and
Y.
Dai
, “
Technical feasibility assessment of a standalone photovoltaic/wind/adiabatic compressed air energy storage based hybrid energy supply system for rural mobile base station
,”
Energy Convers. Manage.
206
,
112486
(
2020
).
24.
I.
Jebabli
,
N.
Kouaissah
, and
M.
Arouri
, “
Volatility spillovers between stock and energy markets during crises: A comparative assessment between the 2008 global financial crisis and the COVID-19 pandemic crisis
,”
Finance Res. Lett.
46
,
102363
(
2022
).
25.
P. M.
Forster
,
A. C.
Maycock
,
C. M.
McKenna
, and
C. J.
Smith
, “
Latest climate models confirm need for urgent mitigation
,”
Nat. Clim. Change
10
,
7
10
(
2020
).
26.
L. C.
Vieira
,
M.
Longo
, and
M.
Mura
, “
Are the European manufacturing and energy sectors on tract for achieving net-zero emissions in 2050? An empirical analysis
,”
Energy Policy
156
,
112464
(
2021
).
27.
D. H.
Wood
, “
Maximum wind turbine performance at low tip speed ratio
,”
J. Renewable Sustainable Energy
7
,
053126
(
2015
).
28.
S.
McTavish
,
D.
Feszty
, and
F.
Nitzsche
, “
Evaluating Reynolds number effects in small-scale wind turbine experiments
,”
J. Wind Eng. Ind. Aerodyn.
120
,
81
90
(
2013
).
29.
O.
Siram
and
N.
Sahoo
, “
Performance assessment of straight and linearly tapered rotors through wind tunnel investigation for off-grid applications
,”
Wind Eng.
46
(
4
),
1291
1310
(
2022
).
30.
J. F.
Manwell
,
J. G.
Mcgowan
, and
A. L.
Rogers
,
Wind Energy Explained: Theory, Design and Application
, 2nd ed. (
Wiley
,
UK
,
2009
).
31.
N.
Karthikeyan
,
K. K.
Murugavel
,
S. A.
Kumar
, and
R.
Kumar
, “
Review of aerodynamic developments on small horizontal axis wind turbine blade
,”
Renewable Sustainable Energy Rev.
42
,
801
822
(
2015
).
32.
W.
Tangler
and
R. V.
Rooij
, “
Summary of the Delft University wind turbine dedicated airfoils
,”
ASME J. Sol. Energy Eng.
125
(
4
),
488
496
(
2003
).
33.
P.
Giguere
and
M. S.
Selig
, “
Low Reynolds number airfoils for small horizontal axis wind turbines
,”
Wind Eng.
21
,
367
380
(
1997
).
34.
P.
Giguere
and
M. S.
Selig
, “
aerodynamic effects of leading-edge tape on aerofoils at low Reynolds numbers
,”
Wind Energy
2
(
3
),
125
136
(
1999
).
35.
X.
Shen
,
H.
Yang
,
J.
Chen
,
X.
Zhu
, and
Z.
Du
, “
Aerodynamic shape optimization of non-straight small wind turbine blades
,”
Energy Convers. Manage.
119
,
266
278
(
2016
).
36.
M. M.
Duquette
and
K. D.
Visser
, “
Numerical implications of solidity and blade number on rotor performance of horizontal-axis wind turbines
,”
ASME J. Sol. Energy Eng.
125
(
4
),
425
432
(
2003
).
37.
H.
Hirahara
,
M. Z.
Hossain
, and
Y.
Nonomura
, “
Testing basic performance of a very small wind turbine designed for multi-purposes
,”
Renewable Energy
30
(
8
),
1279
1297
(
2005
).
38.
F.
Wang
,
L.
Bai
,
J.
Fletcher
,
J.
Whiteford
, and
D.
Cullen
, “
The methodology for aerodynamic study on a small domestic wind turbine with scoop
,”
J. Wind Eng. Ind. Aerodyn.
96
(
1
),
1
24
(
2008
).
39.
J.
Zhang
,
Z.
Zhou
, and
Y.
Lei
, “
Design and research of high-performance low-speed wind turbine blades
,”in
World Non-Grid-Connected Wind Power and Energy Conference
(IEEE,
2009
), pp.
1
5
.
40.
P.
Freere
,
M.
Sacher
,
J.
Derricott
, and
B.
Hanson
, “
A low cost wind turbines and blade performance
,”
Wind Eng.
34
(
3
),
289
302
(
2010
).
41.
H.
Matsumiya
,
R.
Ito
,
M.
Kawakami
,
D.
Matsushita
,
M.
Iida
, and
C.
Arakawa
, “
Field operation and track tests of 1-kW small wind turbine under high wind conditions
,”
ASME J. Sol. Energy Eng.
132
(
1
),
011002
(
2010
).
42.
R.
Lanzafame
and
M.
Messina
, “
Power curve control in micro wind turbine design
,”
Energy
35
(
2
),
556
561
(
2010
).
43.
P. -Å.
Krogstad
and
J. A.
Lund
, “
An experimental and numerical study of the performance of a model turbine
,”
Wind Energy
15
(
3
),
443
457
(
2012
).
44.
H.
Wu
,
L.
Chen
,
M.
Yu
,
W.
Li
, and
B.-F.
Chen
, “
On design and performance prediction of the horizontal-axis water turbine
,”
Ocean Eng.
50
,
23
30
(
2012
).
45.
M.
Refan
and
H.
Hangan
, “
Aerodynamic performance of a small horizontal axis wind turbine
,”
ASME J. Sol. Energy Eng.
134
(
2
),
021013
(
2012
).
46.
T. Y.
Chen
,
Y. T.
Liao
, and
C. C.
Cheng
, “
Development of small wind turbines for moving vehicles: Effects of flanged diffusers on rotor performance
,”
Exp. Therm. Fluid Sci.
42
,
136
142
(
2012
).
47.
R. K.
Singh
,
M. R.
Ahmed
,
M. A.
Zullah
, and
Y. H.
Lee
, “
Design of a low Reynolds number airfoil for small horizontal axis wind turbines
,”
Renewable Energy
42
,
66
76
(
2012
).
48.
R. K.
Singh
and
M. R.
Ahmed
, “
Blade design and performance testing of a small wind turbine rotor for low wind speed applications
,”
Renewable Energy
50
,
812
819
(
2013
).
49.
P. A. C.
Rocha
,
H. H. B.
Rocha
,
F. O. M.
Carneiro
,
M. E. V.
da Silva
, and
A. V.
Bueno
, “
k-ω SST (shear stress transport) turbulence model calibration: A case study on a small scale horizontal axis wind turbine
,”
Energy
65
,
412
418
(
2014
).
50.
R. A.
Kishore
,
T.
Coudron
, and
S.
Priya
, “
Small-scale Wind Energy Portable Turbine (SWEPT)
,”
J. Wind Eng. Ind. Aerodyn.
116
,
21
31
(
2013
).
51.
R. A.
Kishore
and
S.
Priya
, “
Design and experimental verification of a high efficiency Small Wind Energy Portable Turbine (SWEPT)
,”
J. Wind Eng. Ind. Aerodyn.
118
,
12
19
(
2013
).
52.
Q.
Song
and
W. D.
Lubitz
, “
Design and testing of a new small wind turbine blade
,”
ASME J. Sol. Energy Eng.
136
(
3
),
034502
(
2014
).
53.
G. Y.
Huang
,
Y. C.
Shiah
,
C. J.
Bai
, and
W. T.
Chong
, “
Experimental study of the protuberance effect on the blade performance of a small horizontal axis wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
147
,
202
211
(
2015
).
54.
R. S.
Jackson
and
R.
Amano
, “
Experimental study and simulation of a small-scale horizontal-axis wind turbine
,”
ASME J. Energy Resour. Technol.
139
(
5
),
051207
(
2017
).
55.
S. N.
Akour
,
M.
Al-Heymari
,
T.
Ahmed
, and
K. A.
Khalil
, “
Experimental and theoretical investigation of micro wind turbine for low wind speed regions
,”
Renewable Energy
116
(
A
),
215
223
(
2018
).
56.
S. P.
Evans
,
D. R.
Bradney
, and
P. D.
Clausen
, “
Development and experimental verification of a 5 kW small wind turbine aeroelastic model
,”
J. Wind Eng. Ind. Aerodyn.
181
,
104
111
(
2018
).
57.
P. A. C.
Rocha
,
J. W. C.
Araujo
,
R. J. P.
Lima
,
M. E. V.
Silva
,
D.
Albiero
,
C. F.
Andrade
, and
F. O. M.
Carneiro
, “
The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments
,”
Energy
148
,
169
178
(
2018
).
58.
M.
Lipian
,
I.
Dobrev
,
M.
Karczewski
,
F.
Massouh
, and
K.
Jozwik
, “
Small wind turbine augmentation: Experimental investigation of shrouded and twin-rotor wind turbine systems
,”
Energy
186
,
115855
(
2016
).
59.
W. D.
MacPhee
and
A.
Beyene
, “
Performance analysis of a small wind turbine equipped with flexible blades
,”
Renewable Energy
132
,
497
508
(
2019
).
60.
B.
Li
,
D. L.
Zhou
,
Y.
Wang
,
Y.
Shuai
,
Q. Z.
Liu
, and
W. H.
Cai
, “
The design of a small lab-scale wind turbine model with high performance similarity to its utility-scale prototype
,”
Renewable Energy
149
,
435
444
(
2020
).
61.
A. M.
Abdelsalam
,
W. A.
El-Askary
,
M. A.
Kotb
, and
I. M.
Sakr
, “
Experimental study on small scale horizontal axis wind turbine of analytically-optimized blade with linearized chord twist angle profile
,”
Energy
216
,
119304
(
2021
).
62.
Y.
Liu
,
P.
Li
,
W.
He
, and
K.
Jiang
, “
Numerical study of the effect of surface grooves on the aerodynamic performance of a NACA 4415 airfoil for small wind turbines
,”
J. Wind Eng. Ind. Aerodyn.
206
,
104263
(
2020
).
63.
R. E.
Sheldahi
and
P. C.
Klimas
, “
Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines
,” Sandia National Laboratories,
Technical Report No. SAND80-2114
(
1981
).
64.
P.
Giguere
and
M. S.
Selig
, “
New airfoils for small horizontal axis wind turbines
,”
ASME J. Sol. Energy Eng.
120
(
2
),
108
114
(
1998
).
65.
A.
Suresh
and
S.
Rajakumar
, “
Design of small horizontal axis wind turbine for low wind speed rural applications
,”
Mater. Today
23
(
1
),
16
22
(
2020
).
66.
M. S.
Selig
and
J. J.
Guglielmo
, “
High-lift low Reynolds number airfoil design
,”
J. Aircr.
34
(
1
),
72
79
(
1997
).
67.
M. S.
Selig
and
B. D.
McGranahan
, “
Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines
,”
Technical Report No. NREL/SR-500-34515
(
University of Illinois at Urbana-Champaign
,
2004
).
68.
M. S.
Selig
and
B. D.
McGranahan
, “
Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines
,”
ASME J. Sol. Energy Eng.
126
(
4
),
986
1001
(
2004
).
69.
R. K.
Gupta
,
V.
Warudkar
,
R.
Purohit
, and
R. S.
Rajpurohit
, “
Modeling and aerodynamic analysis of small scale, mixed airfoil horizontal axis wind turbine blade
,”
Mater. Today
4
,
5370
5384
(
2017
).
70.
J.
Wata
,
M.
Faizal
,
B.
Talu
,
L.
Vanawalu
,
P.
Sotia
, and
M. R.
Ahmed
, “
Studies on a low Reynolds number airfoil for small wind turbine applications
,”
Sci. China Technol. Sci.
54
(
7
),
1684
1688
(
2011
).
71.
P.
Migliore
and
S.
Oerlemans
, “
Wind tunnel aeroacoustic tests of six airfoils for use on small wind turbines
,”
ASME J. Sol. Energy Eng.
126
(
4
),
974
985
(
2004
).
72.
M. R.
Ahmed
,
S.
Narayan
,
M. A.
Zullah
, and
Y. H.
Lee
, “
Experimental and numerical studies on a low Reynolds number airfoil for wind turbine blades
,”
J. Fluid Sci. Technol.
6
,
357
371
(
2011
).
73.
A.
Pourrajabian
,
M.
Mirzaei
,
R.
Ebrahimi
, and
D.
Wood
, “
Effect of air density on the performance of a small wind turbine blade: A case study in Iran
,”
J. Wind Eng. Ind. Aerodyn.
126
,
1
10
(
2014
).
74.
S.
Rahgozar
,
A.
Pourrajabian
,
S. A. A.
Kazmi
, and
S. M. R.
Kazmi
, “
Performance analysis of a small horizontal axis wind turbine under the use of linear/nonlinear distributions for the chord and twist angle
,”
Energy Sustainable Dev.
58
,
42
49
(
2020
).
75.
Y.
Zhang
,
Z.
Zhou
,
K.
Wang
, and
X.
Li
, “
Aerodynamic characteristics of different airfoils under varied turbulence intensities at low Reynolds numbers
,”
Appl. Sci.
10
(
5
),
1706
(
2020
).
76.
E. N.
Prasad
,
S.
Janakiram
,
T.
Prabu
, and
S.
Sivasubramaniam
, “
Design and development of horizontal small wind turbine blade for low wind speeds
,”
Int. J. Eng. Sci. Adv. Technol.
4
(
1
),
75
84
(
2014
).
77.
M.
Hasan
,
A.
El-Shahat
, and
M.
Rahman
, “
Performance investigation of three combined airfoils bladed small scale horizontal axis wind turbine by BEM and CFD analysis
,”
J. Power Energy Eng.
5
(
5
),
14
27
(
2017
).
78.
S. M.
Habali
and
I. A.
Saleh
, “
Local design, testing and manufacturing of small mixed airfoil wind turbine blades of glass fiber reinforced plastics: Part I: Design of the blade and root
,”
Energy Convers. Manage.
41
(
3
),
249
280
(
2000
).
79.
A.
Vardar
and
I.
Alibas
, “
Research on wind turbine rotor models using NACA profiles
,”
Renewable Energy
33
(
7
),
1721
1732
(
2008
).
80.
Y. Y. H.
Aung
,
M. M.
Soe
, and
A. M.
Thu
, “
Effect of attack angle on aerodynamics analysis of different wind turbine wings using numerical simulation
,”
Am. Sci. Res. J. Eng., Technol., Sci.
26
(
4
),
319
329
(
2016
).
81.
M.
Khaled
,
M. M.
Ibrahim
,
H. E. A.
Hamed
, and
A. F. A.
Gawad
, “
Aerodynamic design and blade angle analysis of a small horizontal-axis wind Turbine
,”
Am. J. Mod. Energy
3
(
2
),
23
37
(
2017
).
82.
W.
Tian
,
Z.
Yang
,
Q.
Zhang
,
J.
Wang
,
M.
Li
,
Y.
Ma
, and
Q.
Cong
, “
Bionic design of wind turbine blade based on long-eared Owl's airfoil
,”
Appl. Bionics Biomech.
2017
,
8504638
.
83.
H. H.
Nigim
and
G. A.
Jabbar
, “
Aerodynamic testing of multi-bladed wind rotors at low Reynolds numbers
,”
Sol. Wind Technol.
6
(
2
),
143
148
(
1989
).
84.
C. P.
Butterfield
,
G.
Scott
, and
W.
Musial
, “
Comparison of wind tunnel airfoil performance data with wind turbine blade data
,”
ASME J. Sol. Energy Eng.
114
(
194
),
119
124
(
1992
).
85.
D.
Corbus
and
D.
Prascher
, “
Analysis and comparison of test results from the small wind research turbine test project
,” National Renewable Energy Laboratory,
Report No. NREL/CP-500-36891
(
2004
).
86.
M.
Miller
,
K. L.
Slew
, and
E.
Matida
, “
The development of a flat back wind turbine airfoil Family
,”
Wind Energy
21
(
12
),
1372
1382
(
2018
).
87.
P.
Fuglsang
,
C.
Bak
,
M.
Gaunaa
, and
I.
Antoniou
, “
Design and verification of the Risø-B1 airfoil family for wind turbines
,”
ASME J. Sol. Energy Eng.
126
(
4
),
1003
1010
(
2004
).
88.
J. C. C.
Henriques
,
F. M.
Silva
, and
A. I.
Estanqueiro
, “
Design of a new urban wind turbine airfoil using a pressure-load inverse method
,”
Renewable Energy
34
(
12
),
2728
2734
(
2009
).
89.
M.
Gad-el-Hak
,
Flow Control: Passive, Active, and Reactive Flow Management
(
Cambridge University Press
,
New York
,
2007
).
90.
J. E.
Green
, “
Laminar flow control-back to the future?
,” AIAA Paper No. AIAA 2008-3738 (
2008
).
91.
S. M. A.
Aftab
,
N. A.
Razak
,
A. S. M.
Rafie
, and
K. A.
Ahmad
, “
Mimicking the humpback whale: An aerodynamic perspective
,”
Prog. Aerosp. Sci.
84
,
48
69
(
2016
).
92.
T. M.
Kirk
and
S.
Yarusevych
, “
Vortex shedding within laminar separation bubbles forming over an airfoil
,”
Exp. Fluids
58
(
43
),
1
17
(
2017
).
93.
C. M.
Xisto
,
J. C.
Páscoa
, and
M.
Trancossi
, “
Geometrical parameters influencing the aerodynamic efficiency of a small-scale self-pitch high-solidity VAWT
,”
ASME J. Sol. Energy Eng.
138
(
3
),
031006
(
2016
).
94.
J. A.
Leger
,
J. C.
Pascoa
, and
C. M.
Xisto
, “
Analytical modeling of a cyclorotor in hovering state
,”
Proc. Inst. Mech. Eng., Part G
229
(
12
),
2163
2177
(
2015
).
95.
I.
Grant
and
P.
Parkin
, “
A DPIV study of the trailing vortex elements from the blades of a horizontal axis wind turbine in yaw
,”
Exp. Fluids
28
,
368
376
(
2000
).
96.
D.
Medici
and
P. H.
Alfredsson
, “
Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding
,”
Wind Energy
9
(
3
),
219
236
(
2006
).
97.
D.
Medici
and
P. H.
Alfredsson
, “
Measurements behind model wind turbines: Further evidence of wake meandering
,”
Wind Energy
11
(
2
),
211
217
(
2008
).
98.
O.
Siram
,
R.
Kumar
,
U. K.
Saha
, and
N.
Sahoo
, “
A comprehensive review on analytical formulations of wind turbine wake models and future scope in the development of wind farms of assorted configurations
,”
ASME J. Energy Resour. Technol.
144
(
11
),
110801
(
2022
).
99.
A. S.
Bahaj
,
A. F.
Molland
,
J. R.
Chaplin
, and
W. M. J.
Batten
, “
Power and trust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing Tank
,”
Renewable Energy
32
(
3
),
407
426
(
2007
).
100.
O.
Siram
,
N.
Sahoo
, and
U. K.
Saha
, “
Wind tunnel tests of a model small-scale horizontal-axis wind turbine developed from blade element momentum theory
,”
ASME J. Energy Resour. Technol.
144
(
6
),
064502
(
2022
).
101.
X.
Zhu
,
J.
Chen
,
X.
Shen
, and
Z.
Du
, “
Impact of blade flexibility on wind turbine loads and pitch settings
,”
ASME J. Sol. Energy Eng.
141
(
4
),
041002
(
2019
).
102.
L. H.
Shu
,
K.
Ueda
,
I.
Chiu
, and
H.
Cheong
, “
Biologically inspired design
,”
CIRP Ann.-Manuf. Technol.
60
,
673
693
(
2011
).
103.
P.
Jamieson
, “
Beating Betz-energy extraction limits in a uniform flow field
,” in
European Wind Energy Conference (EWEC)
, Brussels, Belgium, 31 March–3 April 2008, pp.
1
10
.
104.
Y.
Ohya
and
T.
Karasudani
, “
A shrouded wind turbine generating high output power with wind-lens technology
,”
Energies
3
(
4
),
634
649
(
2010
).
105.
R.
Venters
,
B. T.
Helenbrook
, and
K. D.
Visser
, “
Ducted wind turbine optimization
,”
ASME J. Sol. Energy Eng.
140
(
1
),
011005
(
2018
).
106.
Y.
Ohya
,
J.
Miyazaki
,
U.
Göltenbott
, and
K.
Watanabe
, “
Power augmentation of shrouded wind turbines in a multirotor system
,”
ASME J. Energy Resour. Technol.
139
(
5
),
051202
(
2017
).
107.
Y.
Ohya
and
K.
Watanabe
, “
A new approach toward power output enhancement using multirotor systems with shrouded wind turbines
,”
ASME J. Energy Resour. Technol.
141
(
5
),
051203
(
2019
).
108.
K.
Watanabe
and
Y.
Ohya
, “
Multirotor systems using three shrouded wind turbines for power output increase
,”
ASME J. Energy Resour. Technol.
141
(
5
),
051211
(
2019
).
109.
R.
Bontempo
and
M.
Manna
, “
Diffuser augmented wind turbines: Review and assessment of theoretical models
,”
Appl. Energy
280
,
115867
(
2020
).
110.
E. J.
Limacher
,
P. O.
da Silva
,
P. E.
Barbosa
, and
J. R.
Vaz
, “
Large exit flanges in diffuser-augmented turbines lead to sub-optimal performance
,”
J. Wind Eng. Ind. Aerodyn.
204
,
104228
(
2020
).
111.
D.
Lentink
,
W.
Dickson
,
J.
van Leeuwen
, and
M.
Dickinson
, “
Leading-edge vortices elevate lift of autorotating plant seeds
,”
Science
324
(
5933
),
1438
1440
(
2009
).
112.
C.
Seidel
,
S.
Jayaram
,
L.
Kunkel
 et al, “
Structural analysis of biologically inspired small wind turbine blades
,”
Int. J. Mech. Mater. Eng.
12
,
19
(
2017
).
113.
F.
Fish
,
P.
Weber
,
M.
Murray
, and
L.
Howle
, “
The tubercles on humpback whales' flippers: Application of bio-inspired technology
,”
Integr. Comp. Biol.
51
(
1
),
203
213
(
2011
).
114.
D. S.
Miklosovic
,
M. M.
Murray
, and
L. E.
Howle
, “
Experimental evaluation of sinusoidal leading edges
,”
J. Aircr.
44
(
4
),
404
1408
(
2007
).
115.
Y.-J.
Chu
and
W.-T.
Chong
, “
A biomimetic wind turbine inspired by dryobalanops aromatica seed: Numerical prediction of rigid rotor blade performance with OpenFOAM
,”
Comput. Fluids
159
,
295
315
(
2017
).
116.
Y.-J.
Chu
, “
A new biomimicry marine current turbine: Study of hydrodynamic performance and wake using software OpenFOAM
,”
J. Hydrodyn., Ser. B
28
(
1
),
125
141
(
2016
).
117.
M.
Fluck
and
C.
Crawford
, “
A lifting line model to investigate the influence of tip feathers on wind performance
,”
Bioinspired Biomimetics
9
(
4
),
046017
(
2014
).
118.
M.
Lynch
,
B.
Mandadzhiev
, and
A.
Wissa
, “
Bioinspired wingtip devices-a pathway to improve aerodynamic performance during low Reynolds number flight
,”
Bioinspired Biomimetics
13
(
3
),
036003
(
2018
).
119.
S. R.
Reddy
,
G. S.
Dulikravich
,
H.
Sobieczky
, and
M.
Gonzalez
, “
Bladelets—Winglets on blades of wind turbines: A multiobjective design optimization study
,”
ASME J. Sol. Energy Eng.
141
(
6
),
061003
(
2019
).
120.
Y.
Ostovan
,
M. T.
Akpolat
, and
O.
Uzol
, “
Experimental investigation of the effects of winglets on the tip vortex behavior of a model horizontal axis wind turbine using particle image velocimetry
,”
ASME J. Sol. Energy Eng.
141
(
1
),
011006
(
2019
).
121.
D.
Gertz
,
D. A.
Johnson
, and
N.
Swytink-Binnema
, “
An evaluation testbed for wind turbine blade tip designs—Winglet results
,”
Wind Eng.
36
(
4
),
389
410
(
2012
).
122.
D.
Hu
,
S.
Ji
, and
Z.
Wu
, “
Study on aerodynamic performance of offshore floating wind turbine with fusion winglets
,”
ASME J. Sol. Energy Eng.
142
(
5
),
051007
(
2020
).
123.
J. J.
Videler
,
E. J.
Stamhuis
, and
G. D. E.
Povel
, “
Leading-edge vortex lifts swifts
,”
Science
306
(
5703
),
1960
1962
(
2004
).
124.
D.
Lentink
,
U. K.
Müller
,
E. J.
Stamhuis
,
R.
de Kat
,
W.
van Gestel
,
L. L. M.
Veldhuis
,
P.
Henningsson
,
P.
Hedenström
,
J. J.
Videler
, and
J. L.
van Leeuwen
, “
How swifts control their glide performance with morphing wings
,”
Nature
446
,
1082
1085
(
2007
).
125.
S.
Darvishpoor
,
J.
Roshanian
,
A.
Raissi
, and
M.
Hassanalian
, “
Configuration, flight mechanism, and applications of unmanned aerial systems: A review
,”
Prog. Aerosp. Sci.
121
,
100694
(
2020
).
126.
T.
Ikeda
,
H.
Tanaka
,
R.
Yoshimura
,
R.
Noda
,
T.
Fuji
, and
H.
Liu
, “
A robust biomimetic blade design for micro wind turbines
,”
Renewable Energy
125
,
155
165
(
2018
).
127.
P.
Smetacek
,
A Naturalist's Guide to the Butterflies of India
(
Prakash Books India Pvt. Ltd
.,
2016
).
128.
O.
Siram
and
N.
Sahoo
, “
Near wake regime study on wind turbine blade tip vortex
,” in
ASME Gas Turbine India Conference
December 5–6 (
IIT
,
Madras
,
2019
).
129.
O.
Siram
,
R.
Kumar
,
U. K.
Saha
, and
N.
Sahoo
, “
Wind tunnel probe into an array of small-scale horizontal-axis wind turbines operating at low tip speed ratio conditions
,”
ASME J. Energy Resour. Technol.
144
(
9
),
091303
(
2022
).
130.
T. A.
Burdett
and
K. W.
Van Treuren
, “
Scaling small-scale wind turbines for wind tunnel testing
,” in
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
(American Society of Mechanical Engineers,
2012
), pp.
811
820
.
You do not currently have access to this content.