Each year the U.S. government makes significant investments in improving weather forecast models. In this paper, we use a multidisciplinary approach to examine how utilities can benefit from improved wind-speed forecasts to more efficiently use wind-generated electricity and subsequently increase economic activity. Specifically, we examine how improvements to the National Oceanic and Atmospheric Administration's high-resolution rapid refresh model (HRRR) wind forecasts can provide (1) cost savings for utilities and (2) increase in real household income. To do so, we compare 12-h-ahead wind forecasts with real-time observations for two HRRR model transitions (i.e., when one model is operational, the other is being tested). We compare estimates of actual and predicted wind power under the publicly available and developmental models, with reduced forecast errors allowing for better utility decision-making and lower production costs. We then translate potential cost savings into electricity price changes, which are entered as exogenous shocks to eight regional computable general equilibrium models constructed for the U.S. Overall, we find that households would have seen a potential $60 million increase in real income for our sample (13% of all contiguous U.S. land-based turbine capacity), which had the updated HRRR models been in place during the two transition periods; applying our estimated savings for the sample of turbines to the entire array of turbines shows a potential real household income increase in approximately $384 million during these time frames.

1.
Babatunde
,
K. A.
,
Begum
,
R. A.
, and
Said
,
F. F.
, “
Application of computable general equilibrium (CGE) to climate change mitigation policy: A systematic review
,”
Renewable Sustainable Energy Rev.
78
,
61
71
(
2017
).
2.
Bergman
,
L.
, “
Energy policy modeling: A survey of general equilibrium approaches
,”
J. Policy Model.
10
(
3
),
377
399
(
1988
).
3.
Bohringer
,
C.
and
Loschel
,
A.
, “
Promoting renewable energy in Europe: A hybrid computable general equilibrium approach
,”
Energy J.
27
,
135
150
(
2006
).
4.
Brown
,
J. P.
,
Pender
,
J.
,
Wiser
,
R.
,
Lantz
,
E.
, and
Hoen
,
B.
, “
Ex post analysis of economic impacts from wind power development in US counties
,”
Energy Econ.
34
(
6
),
1743
1754
(
2012
).
5.
Cai
,
Y.
and
Arora
,
V.
, “
Disaggregating electricity generation technologies in CGE models: A revised technology bundle approach with an application to the US Clean Power Plan
,”
Appl. Energy
154
,
543
555
(
2015
).
6.
Chao
,
H.-P.
, “
Efficient pricing and investment in electricity markets with intermittent resources
,”
Energy Policy
39
(
7
),
3945
3953
(
2011
).
7.
Cohen
,
S. M.
and
Caron
,
J.
, “
The economic impacts of high wind penetration scenarios in the United States
,”
Energy Econ.
76
,
558
573
(
2018
).
8.
Coxhead
,
I.
,
Wattanakuljarus
,
A.
, and
Nguyen
,
C. V.
, “
Are carbon taxes good for the poor? A general equilibrium analysis for Vietnam
,”
World Dev.
51
,
119
131
(
2013
).
9.
Csereklyei
,
Z.
,
Qu
,
S.
, and
Ancev
,
T.
, “
The effect of wind and solar power generation on wholesale electricity prices in Australia
,”
Energy Policy
131
,
358
369
(
2019
).
10.
Cutler
,
H.
,
Shields
,
M.
, and
Davies
,
S.
, “
Can state tax policy increase economic activity and reduce inequality?
,”
Growth Change
49
(
1
),
142
164
(
2018
).
11.
Cutler
,
H.
,
Shields
,
M.
,
Tavani
,
D.
, and
Zahran
,
S.
, “
Integrating engineering outputs from natural disaster models into a dynamic spatial computable general equilibrium model of Centerville
,”
Sustainable Resilient Infrastruct.
1
(
3–4
),
169
187
(
2016
).
12.
Dai
,
H.
,
Herran
,
D. S.
,
Fujimori
,
S.
, and
Masui
,
T.
, “
Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches
,”
Renewable Energy
85
,
19
30
(
2016
).
13.
Damien
,
P.
,
Fuentes-García
,
R.
,
Mena
,
R. H.
, and
Zarnikau
,
J.
, “
Impacts of day-ahead versus real-time market prices on wholesale electricity demand in Texas
,”
Energy Econ.
81
,
259
272
(
2019
).
14.
De Miera
,
G. S.
,
del Río González
,
P.
, and
Vizcaíno
,
I.
, “
Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain
,”
Energy Policy
36
(
9
),
3345
3359
(
2008
).
15.
Dowell
,
D. C.
,
Alexander
,
C. R.
,
James
,
E. P.
,
Weygandt
,
S. S.
,
Benjamin
,
S. G.
,
Manikin
,
G. S.
,
Blake
,
B. T.
,
Brown
,
J. M.
,
Olson
,
J. B.
,
Hu
,
M.
,
Smirnova
,
T. G.
,
Ladwig
,
T.
,
Kenyon
,
J. S.
,
Ahmadov
,
R.
,
Turner
,
D. D.
, and
Alcott
,
T. I.
, “
The high-resolution rapid refresh (HRRRR): An hourly updating convection-allowing forecast model. Part 1: Motivation and system description
,”
Weather Forecast.
(to be published) (
2021
).
16.
Elkins
,
P.
and
Baker
,
T.
, “
Carbon taxes and carbon emissions trading
,”
J. Econ. Surv.
15
(
3
),
325
376
(
2001
).
17.
Goodarzi
,
S.
,
Perera
,
H. N.
, and
Bunn
,
D.
, “
The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices
,”
Energy Policy
134
,
110827
(
2019
).
18.
Gürtler
,
M.
and
Paulsen
,
T.
, “
The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany
,”
Energy Econ.
75
,
150
162
(
2018
).
19.
Hagemann
,
S.
, “
Price determinants in the German intraday market for electricity: An empirical analysis
,”
J. Energy Mark.
8
(
2
),
21
45
(
2015
).
20.
Hartman
,
B.
,
Cutler
,
H.
,
Shields
,
M.
, and
Turner
,
D.
, “
The economic effects of improved precipitation forecasts in the United States due to better commuting decisions
,”
Growth Change
52
(
4
),
2149
2171
(
2021
).
21.
Hoen
,
B. D.
,
Diffendorfer
,
J. E.
,
Rand
,
J. T.
,
Kramer
,
L. A.
,
Garrity
,
C. P.
, and
Hunt
,
H. E.
, “
United States wind turbine database, version 4.3 (U.S. Geological Survey, American Clean Power Association, and Lawrence Berkeley National Laboratory data release, 2018)
,” (last viewed January 14, 2022).
22.
Jorgenson
,
D. W.
,
Goettle
,
R. J.
,
Ho
,
M. S.
, and
Wilcoxen
,
P. J.
, “
Carbon taxes and fiscal reform in the United States
,”
Natl. Tax J.
68
(
1
),
121
137
(
2015
).
23.
Karanfil
,
F.
and
Li
,
Y.
, “
The role of continuous intraday electricity markets: The integration of large-share wind power generation in Denmark
,”
Energy J.
38
(
2
),
107
130
(
2017
).
24.
Kat
,
B.
,
Paltsev
,
S.
, and
Yuan
,
M.
, “
Turkish energy sector development and the Paris Agreement goals: A CGE model assessment
,”
Energy Policy
122
,
84
96
(
2018
).
25.
Ketterer
,
J. C.
, “
The impact of wind power generation on the electricity price in Germany
,”
Energy Econ.
44
,
270
280
(
2014
).
26.
Kiesel
,
R.
and
Paraschiv
,
F.
, “
Econometric analysis of 15-minute intraday electricity prices
,”
Energy Econ.
64
,
77
90
(
2017
).
27.
Kulakov
,
S.
and
Ziel
,
F.
, “
The impact of renewable energy forecasts on intraday electricity prices
,” e-print arXiv:1903.09641 (
2019
).
28.
Lazard
, see https://www.lazard.com/media/451419/lazards-levelized-cost-of-energy-version-140.pdf for “
Lazard's Levelized Cost of Energy Analysis—Version 14.0
” (
2020
).
29.
Martinez-Anido
,
C. B.
,
Brinkman
,
G.
, and
Hodge
,
B. M.
, “
The impact of wind power on electricity prices
,”
Renewable Energy
94
,
474
487
(
2016
).
30.
Matsumoto
,
K. I.
and
Fujimori
,
S.
, “
CGE models in energy economics
,” in
Routledge Handbook of Energy Economics
(
Routledge
,
2020
), p.
433
.
31.
Nong
,
D.
, “
Development of the electricity-environmental policy CGE model (GTAP-E-PowerS): A case of the carbon tax in South Africa
,”
Energy Policy
140
,
111375
(
2020
).
32.
Partridge
,
M.
and
Rickman
,
D.
, “
Computable general equilibrium CGE modelling regional economic development analysis
,”
Reg. Stud.
44
(
2010
),
1311
1328
(
2010
).
33.
Quint
,
D.
and
Dahlke
,
S.
, “
The impact of wind generation on wholesale electricity market prices in the midcontinent independent system operator energy market: An empirical investigation
,”
Energy
169
,
456
466
(
2019
).
34.
Shaw
,
W. J.
,
Berg
,
L. K.
,
Cline
,
J.
,
Draxl
,
C.
,
Djalalova
,
I.
,
Grimit
,
E. P.
,
Lundquist
,
J. K.
,
Marquis
,
M.
,
McCaa
,
J.
,
Olson
,
J. B.
, and
Sivaraman
,
C.
, “
The second wind forecast improvement project (WFIP2): General overview
,”
Bull. Am. Meteorol. Soc.
100
,
1687
1699
(
2019
).
35.
Skamarock
,
W. C.
, “
Evaluating mesoscale NWP models using kinetic energy spectra
,”
Mon. Weather Rev.
132
,
3019
3032
(
2004
).
36.
Swinand
,
G. P.
and
O'Mahoney
,
A.
, “
Estimating the impact of wind generation and wind forecast errors on energy prices and costs in Ireland
,”
Renewable Energy
75
,
468
473
(
2015
).
37.
Turner
,
D. D.
,
Cutler
,
H.
,
Shields
,
M.
,
Hill
,
R.
,
Hartman
,
B.
,
Hu
,
Y.
,
Lu
,
T.
, and
Jeon
,
H.
, “
Evaluating the economic impacts of improvements to the high-resolution rapid refresh (HRRR) numerical weather prediction model
,”
Bull. Am. Meteorol. Soc.
103(
2
),
E198
E211
(
2022
).
38.
Turner
,
D. D.
,
Hamilton
,
J.
,
Moninger
,
W.
,
Smith
,
M.
,
Strong
,
B.
,
Pierce
,
R.
,
Hagerty
,
V.
,
Holub
,
K.
, and
Benjamin
,
S. G.
, “
A verification approach used in developing the rapid refresh and other numerical weather prediction models
,”
J. Oper. Meteorol.
8
,
39
53
(
2020
).
39.
U.S. Bureau of Economic Analysis
, “
SAGDP1 Gross Domestic Product (GDP) summary, annual by state
,” https://www.bea.gov/data/gdp/gdp-state (accessed June 14, 2021).
40.
Wilczak
,
J. M.
,
Olson
,
J. B.
,
Djalalova
,
I.
,
Bianco
,
L.
,
Berg
,
L. K.
,
Shaw
,
W. J.
 et al, “
Data assimilation impact of in situ and remote sensing meteorological observations on wind power forecasts during the first Wind Forecast Improvement Project (WFIP)
,”
Wind Energy
22
(
7
),
932
944
(
2019
).
41.
Wing
,
I. S.
, “
The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technologies and the cost of limiting US CO2 emissions
,”
Energy Policy
34
(
18
),
3847
3869
(
2006
).
42.
Woo
,
C. K.
,
Horowitz
,
I.
,
Moore
,
J.
, and
Pacheco
,
A.
, “
The impact of wind generation on the electricity spot-market price level and variance: The Texas experience
,”
Energy Policy
39
(
7
),
3939
3944
(
2011
).
You do not currently have access to this content.