Laboratory experiments are conducted to inspect the modulation of model low-level-jet (LLJ) velocity profiles on the wake of a model wind turbine and power output fluctuations and a spectral structure of a simple two-turbine system in an aligned configuration. The scenario with a canonical incoming turbulent boundary layer profile is included for comparison. The results reveal a significant effect of the relative height of the LLJ peak velocity on the near and intermediate wake and power output fluctuations. Those effects are more notorious with the LLJ peak velocity coincident with the turbine top tip. The strong mean shear right above the wake promotes enhanced vertical transport and generation of energetic coherent motions. In particular, the near and intermediate wake velocity spectra showed a robust local signature with a streamwise length on the order of ∼4 times the rotor diameter. Although this shear layer did not significantly affect the spectrum of the power output fluctuations, the relatively large-scale velocity fluctuations may affect wind turbines' downwind in arrays.

1.
M.
Bruck
and
P.
Sandborn
, “
Pricing bundled renewable energy credits using a modified LCOE for power purchase agreements
,”
Renewable Energy
170
,
224
235
(
2021
).
2.
Global Wind Energy Council
,
Global Wind Report 2022
(
Global Wind Energy Council
,
2022
).
3.
D.
Millstein
,
R.
Wiser
,
M.
Bolinger
, and
G.
Barbose
, “
The climate and air-quality benefits of wind and solar power in the United States
,”
Nat. Energy
2
,
17134
(
2017
).
4.
D.
Arent
,
J.
Pless
,
T.
Mai
,
R.
Wiser
,
M.
Hand
,
S.
Baldwin
,
G.
Heath
,
J.
Macknick
,
M.
Bazilian
,
A.
Schlosser
, and
P.
Denholma
, “
Implications of high renewable electricity penetration in the us for water use, greenhouse gas emissions, land-use, and materials supply
,”
Appl. Energy
123
,
368
377
(
2014
).
5.
L.
Valentino
,
V.
Valenzuela
,
A.
Botterud
,
Z.
Zhou
, and
G.
Conzelmann
, “
System-wide emissions implications of increased wind power penetration
,”
Environ. Sci. Technol.
46
,
4200
4206
(
2012
).
6.
L.
Castillo
,
W.
Gutierrez
, and
J.
Gore
,
Renewable Energy Saves Water and Creates Jobs
(
Scientific American
,
2018
).
7.
D. L.
Rife
,
J. O.
Pinto
,
A. J.
Monaghan
,
C. A.
Davis
, and
J. R.
Hannan
, “
Global distribution and characteristics of diurnally varying low-level jets
,”
J. Clim.
23
,
5041
5064
(
2010
).
8.
D. J.
Stensrud
, “
Importance of low-level jets to climate: A review
,”
J. Clim.
9
,
1698
1711
(
1996
).
9.
E. N.
Smith
,
J. G.
Gebauer
,
P. M.
Klein
,
E.
Fedorovich
, and
J. A.
Gibbs
, “
The great plains low-level jet during pecan: Observed and simulated characteristics
,”
Mon. Weather Rev.
147
,
1845
1869
(
2019
).
10.
R.
Banta
,
R.
Newsom
,
J.
Lundquist
,
Y.
Pichugina
,
R.
Coulter
, and
L.
Mahrt
, “
Nocturnal low-level jet characteristics over Kansas during CASES-99
,”
Boundary-Layer Meteorol.
105
,
221
252
(
2002
).
11.
N. D.
Kelley
, “
Turbulence-turbine interaction: The basis for the development of the TurbSim stochastic simulator
,”
Technical Report No. TP-5000-52353
,
National Renewable Energy Laboratory (NREL)
,
Golden, CO
,
2011
.
12.
J.
Wilczak
,
C.
Finley
,
J.
Freedman
,
J.
Cline
,
L.
Bianco
,
J.
Olson
,
I.
Djalalova
,
L.
Sheridan
,
M.
Ahlstrom
, and
J.
Manobianco
, “
The Wind Forecast Improvement Project (WFIP): A public–private partnership addressing wind energy forecast needs
,”
Bull. Am. Meteorol. Soc.
96
,
1699
1718
(
2015
).
13.
W.
Gutierrez
,
G.
Araya
,
P.
Kiliyanpilakkil
,
A.
Ruiz-Columbie
,
M.
Tutkun
, and
L.
Castillo
, “
Structural impact assessment of low level jets over wind turbines
,”
J. Renewable Sustainable Energy
8
,
023308
(
2016
).
14.
S.
Emeis
, “
Wind speed and shear associated with low-level jets over Northern Germany
,”
Meteorol. Z
23
,
295
304
(
2014
).
15.
A.
Lampert
,
B.
Bernalte Jimenez
,
G.
Gross
,
D.
Wulff
, and
T.
Kenull
, “
One-year observations of the wind distribution and low-level jet occurrence at Braunschweig, North German Plain
,”
Wind Energy
19
,
1807
1817
(
2016
).
16.
C.
Jones
, “
Recent changes in the South America low-level jet
,”
npj Clim. Atmos. Sci.
2
,
20
(
2019
).
17.
A. K.
Blackadar
, “
Boundary layer wind maxima and their significance for the growth of nocturnal inversions
,”
Bull. Am. Meteorol. Soc.
38
,
283
290
(
1957
).
18.
R. H.
Langland
,
P. M.
Tag
, and
R. W.
Fett
, “
An ice breeze mechanism for boundary-layer jets
,”
Boundary-Layer Meteorol.
48
,
177
195
(
1989
).
19.
J. D.
Doyle
and
T. T.
Warner
, “
A three-dimensional numerical investigation of a Carolina coastal low-level jet during GALE IOP 2
,”
Mon. Weather Rev.
121
,
1030
1047
(
1993
).
20.
S. A.
Macklin
,
N. A.
Bond
, and
J. P.
Walker
, “
Structure of a low-level jet over lower cook inlet, Alaska
,”
Mon. Weather Rev.
118
,
2568
2578
(
1990
).
21.
L. W.
Uccellini
, “
On the role of upper tropospheric jet streaks and leeside cyclogenesis in the development of low-level jets in the Great Plains
,”
Mon. Weather Rev.
108
,
1689
1696
(
1980
).
22.
L. W.
Uccellini
,
R. A.
Petersen
,
P. J.
Kocin
,
K. F.
Brill
, and
J. J.
Tuccillo
, “
Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone
,”
Mon. Weather Rev.
115
,
2227
2261
(
1987
).
23.
N.
Kelley
,
M.
Shirazi
,
D.
Jager
,
S.
Wilde
,
J.
Adams
,
M.
Buhl
,
P.
Sullivan
, and
E.
Patton
, “
Lamar low-level jet program interim report
,”
Technical Report No. NREL/TP-500-34593
(
National Renewable Energy Lab
.,
Golden, CO
,
2004
).
24.
R. M.
Banta
,
Y. L.
Pichugina
, and
W. A.
Brewer
, “
Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet
,”
J. Atmos. Sci.
63
,
2700
2719
(
2006
).
25.
A.
Doosttalab
,
D.
Siguenza-Alvarado
,
V.
Pulletikurthi
,
Y.
Jin
,
H.
Bocanegra Evans
,
L. P.
Chamorro
, and
L.
Castillo
, “
Interaction of low-level jets with wind turbines: On the basic mechanisms for enhanced performance
,”
J. Renewable Sustainable Energy
12
,
053301
(
2020
).
26.
W.
Gutierrez
,
A.
Ruiz-Columbie
,
M.
Tutkun
, and
L.
Castillo
, “
The structural response of a wind turbine under operating conditions with a low-level jet
,”
Renewable Sustainable Energy Rev.
108
,
380
391
(
2019
).
27.
X.
Zhang
,
C.
Yang
, and
S.
Li
, “
Influence of the heights of low-level jets on power and aerodynamic loads of a horizontal axis wind turbine rotor
,”
Atmosphere
10
,
132
(
2019
).
28.
M.
Abkar
,
A.
Sharifi
, and
F.
Porté-Agel
, “
Wake flow in a wind farm during a diurnal cycle
,”
J. Turbul.
17
,
420
441
(
2016
).
29.
H.
Lu
and
F.
Porté-Agel
, “
Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer
,”
Phys. Fluids
23
,
065101
(
2011
).
30.
A. C.
Fitch
,
J. K.
Lundquist
, and
J. B.
Olson
, “
Mesoscale influences of wind farms throughout a diurnal cycle
,”
Mon. Weather Rev.
141
,
2173
2198
(
2013
).
31.
S. N.
Gadde
and
R. J.
Stevens
, “
Interaction between low-level jets and wind farms in a stable atmospheric boundary layer
,”
Phys. Rev. Fluids
6
,
014603
(
2021
).
32.
J. S.
Na
,
E.
Koo
,
E. K.
Jin
,
R.
Linn
,
S. C.
Ko
,
D.
Muñoz-Esparza
, and
J. S.
Lee
, “
Large-eddy simulations of wind-farm wake characteristics associated with a low-level jet
,”
Wind Energy
21
,
163
173
(
2018
).
33.
D.
Allaerts
and
J.
Meyers
, “
Gravity waves and wind-farm efficiency in neutral and stable conditions
,”
Boundary-Layer Meteorol.
166
,
269
299
(
2018
).
34.
R. B.
Smith
, “
Gravity wave effects on wind farm efficiency
,”
Wind Energy
13
,
449
458
(
2010
). https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.366.
35.
P.
Milan
,
M.
Wächter
, and
J.
Peinke
, “
Turbulent character of wind energy
,”
Phys. Rev. Lett.
110
,
138701
(
2013
).
36.
L. P.
Chamorro
,
S.-J.
Lee
,
D.
Olsen
,
C.
Milliren
,
J.
Marr
,
R.
Arndt
, and
F.
Sotiropoulos
, “
Turbulence effects on a full-scale 2.5 MW horizontal-axis wind turbine under neutrally stratified conditions
,”
Wind Energy
18
,
339
349
(
2015
).
37.
N.
Tobin
,
H.
Zhu
, and
L. P.
Chamorro
, “
Spectral behaviour of the turbulence-driven power fluctuations of wind turbines
,”
J. Turbul.
16
,
832
846
(
2015
).
38.
Y.
Jin
,
H.
Liu
,
R.
Aggarwal
,
A.
Singh
, and
L. P.
Chamorro
, “
Effects of freestream turbulence in a model wind turbine wake
,”
Energies
9
,
830
(
2016
).
39.
N.
Hamilton
,
H. S.
Kang
,
C.
Meneveau
, and
R.
Bayoán Cal
, “
Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer
,”
J. Renewable Sustainable Energy
4
,
063105
(
2012
).
40.
A. J.
Newman
,
D. A.
Drew
, and
L.
Castillo
, “
Pseudo spectral analysis of the energy entrainment in a scaled down wind farm
,”
Renewable Energy
70
,
129
141
(
2014
).
41.
A.
Singh
,
K. B.
Howard
, and
M.
Guala
, “
On the homogenization of turbulent flow structures in the wake of a model wind turbine
,”
Phys. Fluids
26
,
025103
(
2014
).
42.
A.
Lloyd
, “
The generation of shear flow in a wind tunnel
,”
Q. J. R. Meteorol. Soc.
93
,
79
96
(
1967
).
43.
D.
Siguenza-Alvarado
,
A.
Doosttalab
,
S.
Cheng
,
H.
Bocanegra Evans
,
R. B.
Cal
,
L. P.
Chamorro
, and
L.
Castillo
, “
Exploring the effects of low-level-jets on the energy entrainment of vertical-axis wind turbines
,”
J. Renewable Sustainable Energy
13
,
033310
(
2021
).
44.
H.
Liu
,
I.
Hayat
,
Y.
Jin
, and
L. P.
Chamorro
, “
On the evolution of the integral time scale within wind farms
,”
Energies
11
,
93
(
2018
).
45.
H.
Shiu
,
E.
Johnson
,
M.
Barone
,
R.
Phillips
,
W.
Straka
,
A.
Fontaine
,
M.
Jonson
 et al., “
A design of a hydrofoil family for current-driven marine-hydrokinetic turbines
,” in
2012 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference
(
American Society of Mechanical Engineers
,
2012
), pp.
839
847
.
46.
S. N.
Gadde
and
R. J.
Stevens
, “
Effect of low-level jet height on wind farm performance
,”
J. Renewable Sustainable Energy
13
,
013305
(
2021
).
47.
S.
Fu
,
B.
Zhang
,
Y.
Zheng
, and
L. P.
Chamorro
, “
In-phase and out-of-phase pitch and roll oscillations of model wind turbines within uniform arrays
,”
Appl. Energy
269
,
114921
(
2020
).
You do not currently have access to this content.