With the growing number of wind farms over the last few decades and the availability of large datasets, research in wind-farm flow modeling—one of the key components in optimizing the design and operation of wind farms—is shifting toward data-driven techniques. However, given that most current data-driven algorithms have been developed for canonical problems, the enormous complexity of fluid flows in real wind farms poses unique challenges for data-driven flow modeling. These include the high-dimensional multiscale nature of turbulence at high Reynolds numbers, geophysical and atmospheric effects, wake-flow development, and incorporating wind-turbine characteristics and wind-farm layouts, among others. In addition, data-driven wind-farm flow models should ideally be interpretable and have some degree of generalizability. The former is important to avoid a lack of trust in the models with end-users, while the most popular strategy for the latter is to incorporate known physics into the models. This article reviews a collection of recent studies on wind-farm flow modeling, covering both purely data-driven and physics-guided approaches. We provide a thorough analysis of their modeling approach, objective, and methodology and specifically focus on the data utilized in the reviewed works.

1.
S.
Potrč
,
L.
Čuček
,
M.
Martin
, and
Z.
Kravanja
, “
Sustainable renewable energy supply networks optimization—The gradual transition to a renewable energy system within the European Union by 2050
,”
Renewable Sustainable Energy Rev.
146
,
111186
(
2021
).
2.
W.
Zappa
,
M.
Junginger
, and
M.
van den Broek
, “
Is a 100% renewable European power system feasible by 2050?
,”
Appl. Energy
233–234
,
1027
1050
(
2019
).
3.
Global Wind Energy Council
,
Global Wind Report 2021
(
Global Wind Energy Council Brussels
,
Belgium
,
2021
).
4.
P.
Veers
,
K.
Dykes
,
E.
Lantz
,
S.
Barth
,
C. L.
Bottasso
,
O.
Carlson
,
A.
Clifton
,
J.
Green
,
P.
Green
,
H.
Holttinen
 et al, “
Grand challenges in the science of wind energy
,”
Science
366
(
6464
),
eaau2027
(
2019
).
5.
A.
Platis
,
S. K.
Siedersleben
,
J.
Bange
,
A.
Lampert
,
K.
Bärfuss
,
R.
Hankers
,
B.
Cañadillas
,
R.
Foreman
,
J.
Schulz-Stellenfleth
,
B.
Djath
 et al, “
First in situ evidence of wakes in the far field behind offshore wind farms
,”
Sci. Rep.
8
(
1
),
2163
(
2018
).
6.
J.
Lundquist
,
K.
DuVivier
,
D.
Kaffine
, and
J.
Tomaszewski
, “
Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development
,”
Nat. Energy
4
(
1
),
26
34
(
2019
).
7.
J.
Schneemann
,
A.
Rott
,
M.
Dörenkämper
,
G.
Steinfeld
, and
M.
Kühn
, “
Cluster wakes impact on a far-distant offshore wind farm's power
,”
Wind Energy Sci.
5
(
1
),
29
49
(
2020
).
8.
M. O. L.
Hansen
,
J. N.
Sørensen
,
S.
Voutsinas
,
N.
Sørensen
, and
H. A.
Madsen
, “
State of the art in wind turbine aerodynamics and aeroelasticity
,”
Prog. Aerosp. Sci.
42
(
4
),
285
330
(
2006
).
9.
M. O.
Hansen
and
H.
Aagaard Madsen
, “
Review paper on wind turbine aerodynamics
,”
J. Fluids Eng.
133
(
11
),
114001
(
2011
).
10.
T.
Wang
, “
A brief review on wind turbine aerodynamics
,”
Theor. Appl. Mech. Lett.
2
(
6
),
062001
(
2012
).
11.
A. C.
Kheirabadi
and
R.
Nagamune
, “
A quantitative review of wind farm control with the objective of wind farm power maximization
,”
J. Wind Eng. Ind. Aerodyn.
192
,
45
73
(
2019
).
12.
C. R.
Shapiro
,
G. M.
Starke
, and
D. F.
Gayme
, “
Turbulence and control of wind farms
,”
Annu. Rev. Control, Rob., Auton. Syst.
5
(
1
),
579
602
(
2021
).
13.
R.
Nash
,
R.
Nouri
, and
A.
Vasel-Be-Hagh
, “
Wind turbine wake control strategies: A review and concept proposal
,”
Energy Convers. Manage.
245
,
114581
(
2021
).
14.
D. R.
Houck
, “
Review of wake management techniques for wind turbines
,”
Wind Energy
25
(
2
),
195
220
(
2022
).
15.
L. J.
Vermeer
,
J. N.
Sørensen
, and
A.
Crespo
, “
Wind turbine wake aerodynamics
,”
Prog. Aerosp. Sci.
39
(
6–7
),
467
510
(
2003
).
16.
B.
Sanderse
,
S. P.
Van Der Pijl
, and
B.
Koren
, “
Review of computational fluid dynamics for wind turbine wake aerodynamics
,”
Wind Energy
14
(
7
),
799
819
(
2011
).
17.
R. J. A. M.
Stevens
and
C.
Meneveau
, “
Flow structure and turbulence in wind farms
,”
Annu. Rev. Fluid Mech.
49
,
311
339
(
2017
).
18.
F.
Porté-Agel
,
M.
Bastankhah
, and
S.
Shamsoddin
, “
Wind-turbine and wind-farm flows: A review
,”
Boundary-Layer Meteorol.
174
(
1
),
1
59
(
2020
).
19.
T.
Göçmen
,
P.
Van der Laan
,
P.-E.
Réthoré
,
A. P.
Diaz
,
G. C.
Larsen
, and
S.
Ott
, “
Wind turbine wake models developed at the Technical University of Denmark: A review
,”
Renewable Sustainable Energy Rev.
60
,
752
769
(
2016
).
20.
C. L.
Archer
,
A.
Vasel-Be-Hagh
,
C.
Yan
,
S.
Wu
,
Y.
Pan
,
J. F.
Brodie
, and
A. E.
Maguire
, “
Review and evaluation of wake loss models for wind energy applications
,”
Appl. Energy
226
,
1187
1207
(
2018
).
21.
P.
Lissaman
, “
Energy effectiveness of arbitrary arrays of wind turbines
,”
J. Energy
3
(
6
),
323
328
(
1979
).
22.
I.
Katic
,
J.
Højstrup
, and
N. O.
Jensen
, “
A simple model for cluster efficiency
,” in
European Wind Energy Association Conference and Exhibition
(
A. Raguzzi
,
Rome, Italy
,
1986
), vol. 1, pp.
407
410
.
23.
S.
Voutsinas
,
K.
Rados
, and
A.
Zervos
, “
On the analysis of wake effects in wind parks
,”
Wind Eng.
14
,
204
219
(
1990
).
24.
A.
Niayifar
and
F.
Porté-Agel
, “
Analytical modeling of wind farms: A new approach for power prediction
,”
Energies
9
,
741
(
2016
).
25.
H.
Zong
and
F.
Porté-Agel
, “
A momentum-conserving wake superposition method for wind farm power prediction
,”
J. Fluid Mech.
889
,
A8
(
2020
).
26.
M.
Bastankhah
,
B. L.
Welch
,
L. A.
Martínez-Tossas
,
J.
King
, and
P.
Fleming
, “
Analytical solution for the cumulative wake of wind turbines in wind farms
,”
J. Fluid Mech.
911
,
A53
(
2021
).
27.
L.
Lanzilao
and
J.
Meyers
, “
A new wake-merging method for wind-farm power prediction in the presence of heterogeneous background velocity fields
,”
Wind Energy
25
(
2
),
237
259
(
2022
).
28.
S.
Chowdhury
,
J.
Zhang
,
A.
Messac
, and
L.
Castillo
, “
Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation
,”
Renewable Energy
38
(
1
),
16
30
(
2012
).
29.
R.
Shakoor
,
M. Y.
Hassan
,
A.
Raheem
, and
Y.-K.
Wu
, “
Wake effect modeling: A review of wind farm layout optimization using Jensen's model
,”
Renewable Sustainable Energy Rev.
58
,
1048
1059
(
2016
).
30.
S.
Tao
,
Q.
Xu
,
A.
Feijóo
,
G.
Zheng
, and
J.
Zhou
, “
Nonuniform wind farm layout optimization: A state-of-the-art review
,”
Energy
209
,
118339
(
2020
).
31.
C.
Meneveau
, “
Big wind power: Seven questions for turbulence research
,”
J. Turbul.
20
(
1
),
2
20
(
2019
).
32.
G. V.
Iungo
,
F.
Viola
,
U.
Ciri
,
M. A.
Rotea
, and
S.
Leonardi
, “
Data-driven RANS for simulations of large wind farms
,”
J. Phys.
625
(
1
),
012025
(
2015
).
33.
R. N.
King
,
C.
Adcock
,
J.
Annoni
, and
K.
Dykes
, “
Data-driven machine learning for wind plant flow modeling
,”
J. Phys.
1037
(
7
),
072004
(
2018
).
34.
J.
Steiner
,
R.
Dwight
, and
A.
Viré
, “
Classifying regions of high model error within a data-driven RANS closure: Application to wind turbine wakes
,” arXiv:2106.15593 (
2021
).
35.
J.
Steiner
,
R. P.
Dwight
, and
A.
Viré
, “
Data-driven RANS closures for wind turbine wakes under neutral conditions
,”
Comput. Fluids
233
,
105213
(
2022
).
36.
F. J.
Montáns
,
F.
Chinesta
,
R.
Gómez-Bombarelli
, and
J. N.
Kutz
, “
Data-driven modeling and learning in science and engineering
,”
C. R. Méc.
347
(
11
),
845
855
(
2019
).
37.
C. M.
Legaard
,
T.
Schranz
,
G.
Schweiger
,
J.
Drgoňa
,
B.
Falay
,
C.
Gomes
,
A.
Iosifidis
,
M.
Abkar
, and
P. G.
Larsen
, “
Constructing neural network-based models for simulating dynamical systems
,” arXiv:2111.01495 (
2021
).
38.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT Press
,
2016
).
39.
M. A.
Nielsen
,
Neural Networks and Deep Learning
(
Determination Press
,
San Francisco, CA
,
2015
), Vol.
25
.
40.
W.-Y.
Loh
, “
Classification and regression trees
,”
Wiley Interdiscip. Rev.
1
(
1
),
14
23
(
2011
).
41.
L. E.
Peterson
, “
K-nearest neighbor
,”
Scholarpedia
4
(
2
),
1883
(
2009
).
42.
L.
Fahrmeir
,
T.
Kneib
,
S.
Lang
, and
B.
Marx
, “
Regression models
,” in
Regression
(
Springer
,
2013
), pp.
21
72
.
43.
B.
Schölkopf
,
A. J.
Smola
, and
F.
Bach
,
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
(
MIT Press
,
2002
).
44.
A.
Zaras
,
N.
Passalis
, and
A.
Tefas
, “
Neural networks and backpropagation
,” in
Deep Learning for Robot Perception and Cognition
(
Academic Press
,
2022
), pp.
17
34
.
45.
J.
Raitoharju
, “
Convolutional neural networks
,” in
Deep Learning for Robot Perception and Cognition
(
Academic Press
,
2022
), pp.
35
69
.
46.
A.
Tsantekidis
,
N.
Passalis
, and
A.
Tefas
, “
Recurrent neural networks
,” in
Deep Learning for Robot Perception and Cognition
(
Academic Press
,
2022
), pp.
101
115
.
47.
N.
Heidari
,
L.
Hedegaard
, and
A.
Iosifidis
, “
Graph convolutional networks
,” in
Deep Learning for Robot Perception and Cognition
(
Academic Press
,
2022
), pp.
71
99
.
48.
S.
Kiranyaz
,
T.
Ince
,
A.
Iosifidis
, and
M.
Gabbouj
, “
Progressive operational perceptrons
,”
Neurocomputing
224
,
142
154
(
2017
).
49.
D. T.
Tran
,
S.
Kiranyaz
,
M.
Gabbouj
, and
A.
Iosifidis
, “
Heterogeneous multilayer generalized operational perceptron
,”
IEEE Trans. Neural Networks Learn. Syst.
31
(
3
),
710
724
(
2020
).
50.
S.
Kiranyaz
,
T.
Ince
,
A.
Iosifidis
, and
M.
Gabbouj
, “
Operational neural networks
,”
Neural Comput. Appl.
32
,
6645
6668
(
2020
).
51.
S.
Kiranyaz
,
J.
Malik
,
H. B.
Abdallah
,
T.
Ince
,
A.
Iosifidis
, and
M.
Gabbouj
, “
Self-organized operational neural networks with generative neurons
,”
Neural Networks
140
,
294
308
(
2021
).
52.
A. K.
Jain
,
M. N.
Murty
, and
P. J.
Flynn
, “
Data clustering: A review
,”
ACM Comput. Surv.
31
(
3
),
264
323
(
1999
).
53.
I. T.
Jolliffe
and
J.
Cadima
, “
Principal component analysis: A review and recent developments
,”
Philos. Trans. R. Soc., A
374
(
2065
),
20150202
(
2016
).
54.
A.
Chatterjee
, “
An introduction to the proper orthogonal decomposition
,”
Curr. Sci.
78
,
808
817
(
2000
).
55.
M.
Ringnér
, “
What is principal component analysis?
,”
Nat. Biotechnol.
26
(
3
),
303
304
(
2008
).
56.
J. B.
Tenenbaum
,
V. d.
Silva
, and
J. C.
Langford
, “
A global geometric framework for nonlinear dimensionality reduction
,”
Science
290
(
5500
),
2319
2323
(
2000
).
57.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
58.
R. S.
Sutton
and
A. G.
Barto
,
Reinforcement Learning: An Introduction
(
MIT Press
,
2018
).
59.
A.
Tsantekidis
,
N.
Passalis
, and
A.
Tefas
, “
Deep reinforcement learning
,” in
Deep Learning for Robot Perception and Cognition
(
Academic Press
,
2022
), pp.
117
129
.
60.
A. C.
Antoulas
,
D. C.
Sorensen
, and
S.
Gugercin
, “
A survey of model reduction methods for large-scale systems
,”
Contemp. Math.
280
,
193
219
(
2001
).
61.
K.
Ito
and
S. S.
Ravindran
, “
A reduced-order method for simulation and control of fluid flows
,”
J. Comput. Phys.
143
(
2
),
403
425
(
1998
).
62.
M.
Bergmann
,
L.
Cordier
, and
J.-P.
Brancher
, “
Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model
,”
Phys. Fluids
17
(
9
),
097101
(
2005
).
63.
S.
Hijazi
,
M.
Freitag
, and
N.
Landwehr
, “
POD-Galerkin reduced order models and physics-informed neural networks for solving inverse problems for the Navier–Stokes equations
,” arXiv:2112.11950 (
2021
).
64.
W.
Chen
,
Q.
Wang
,
J. S.
Hesthaven
, and
C.
Zhang
, “
Physics-informed machine learning for reduced-order modeling of nonlinear problems
,”
J. Comput. Phys.
446
,
110666
(
2021
).
65.
J.
Chen
,
S.-M.
Kang
,
J.
Zou
,
C.
Liu
, and
J. E.
Schutt-Ainé
, “
Reduced-order modeling of weakly nonlinear MEMS devices with Taylor-series expansion and Arnoldi approach
,”
J. Microelectromech. Syst.
13
(
3
),
441
451
(
2004
).
66.
O.
Axelsson
, “
A generalized conjugate gradient, least square method
,”
Numer. Math.
51
(
2
),
209
227
(
1987
).
67.
Z.
Lin
,
D.
Xiao
,
F.
Fang
,
C.
Pain
, and
I. M.
Navon
, “
Non-intrusive reduced order modelling with least squares fitting on a sparse grid
,”
Int. J. Numer. Methods Fluids
83
(
3
),
291
306
(
2017
).
68.
Z.
Majdisova
and
V.
Skala
, “
Radial basis function approximations: Comparison and applications
,”
Appl. Math. Modell.
51
,
728
743
(
2017
).
69.
M.
Xiao
,
P.
Breitkopf
,
R. F.
Coelho
,
C.
Knopf-Lenoir
,
M.
Sidorkiewicz
, and
P.
Villon
, “
Model reduction by CPOD and kriging
,”
Struct. Multidiscip. Optim.
41
(
4
),
555
574
(
2010
).
70.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
71.
K.
Taira
,
S. L.
Brunton
,
S. T.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
(
12
),
4013
4041
(
2017
).
72.
G. V.
Iungo
,
C.
Santoni-Ortiz
,
M.
Abkar
,
F.
Porté-Agel
,
M. A.
Rotea
, and
S.
Leonardi
, “
Data-driven reduced order model for prediction of wind turbine wakes
,”
J. Phys.
625
(
1
),
012009
(
2015
).
73.
M.
Debnath
,
C.
Santoni
,
S.
Leonardi
, and
G. V.
Iungo
, “
Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes
,”
Philos. Trans. R. Soc., A
375
(
2091
),
20160108
(
2017
).
74.
N.
Hamilton
,
B.
Viggiano
,
M.
Calaf
,
M.
Tutkun
, and
R. B.
Cal
, “
A generalized framework for reduced-order modeling of a wind turbine wake
,”
Wind Energy
21
(
6
),
373
390
(
2018
).
75.
J.
Zhang
and
X.
Zhao
, “
A novel dynamic wind farm wake model based on deep learning
,”
Appl. Energy
277
,
115552
(
2020
).
76.
N.
Ali
and
R. B.
Cal
, “
Data-driven modeling of the wake behind a wind turbine array
,”
J. Renewable Sustainable Energy
12
(
3
),
033304
(
2020
).
77.
N.
Ali
,
M.
Calaf
, and
R. B.
Cal
, “
Cluster-based probabilistic structure dynamical model of wind turbine wake
,”
J. Turbul.
22
(
8
),
497
516
(
2021
).
78.
N.
Ali
,
M.
Calaf
, and
R. B.
Cal
, “
Clustering sparse sensor placement identification and deep learning based forecasting for wind turbine wakes
,”
J. Renewable Sustainable Energy
13
(
2
),
023307
(
2021
).
79.
Z.
Chen
,
Z.
Lin
,
X.
Zhai
, and
J.
Liu
, “
Dynamic wind turbine wake reconstruction: A Koopman-linear flow estimator
,”
Energy
238
,
121723
(
2022
).
80.
B.
Wilson
,
S.
Wakes
, and
M.
Mayo
, “
Surrogate modeling a computational fluid dynamics-based wind turbine wake simulation using machine learning
,” in
2017 IEEE Symposium Series on Computational Intelligence (SSCI)
(
IEEE
,
2017
), pp.
1
8
.
81.
Z.
Ti
,
X. W.
Deng
, and
H.
Yang
, “
Wake modeling of wind turbines using machine learning
,”
Appl. Energy
257
,
114025
(
2020
).
82.
J.
Zhang
and
X.
Zhao
, “
Wind farm wake modeling based on deep convolutional conditional generative adversarial network
,”
Energy
238
,
121747
(
2022
).
83.
S. A.
Renganathan
,
R.
Maulik
,
S.
Letizia
, and
G. V.
Iungo
, “
Data-driven wind turbine wake modeling via probabilistic machine learning
,” in
Neural Computing and Applications
(
Springer
,
2022
), pp.
1
16
.
84.
G.
Nai-Zhi
,
Z.
Ming-Ming
, and
L.
Bo
, “
A data-driven analytical model for wind turbine wakes using machine learning method
,”
Energy Convers. Manage.
252
,
115130
(
2022
).
85.
Z.
Zhang
,
C.
Santoni
,
T.
Herges
,
F.
Sotiropoulos
, and
A.
Khosronejad
, “
Time-averaged wind turbine wake flow field prediction using autoencoder convolutional neural networks
,”
Energies
15
(
1
),
41
(
2022
).
86.
M.
Optis
and
J.
Perr-Sauer
, “
The importance of atmospheric turbulence and stability in machine-learning models of wind farm power production
,”
Renewable Sustainable Energy Rev.
112
,
27
41
(
2019
).
87.
F.
Japar
,
S.
Mathew
,
B.
Narayanaswamy
,
C. M.
Lim
, and
J.
Hazra
, “
Estimating the wake losses in large wind farms: A machine learning approach
,” in
IEEE PES Innovative Smart Grid Technologies Conference (ISGT)
,
2014
.
88.
X.
Yin
and
X.
Zhao
, “
Big data driven multi-objective predictions for offshore wind farm based on machine learning algorithms
,”
Energy
186
,
115704
(
2019
).
89.
Z.
Ti
,
X. W.
Deng
, and
M.
Zhang
, “
Artificial neural networks based wake model for power prediction of wind farm
,”
Renewable Energy
172
,
618
631
(
2021
).
90.
M. F.
Howland
and
J. O.
Dabiri
, “
Wind farm modeling with interpretable physics-informed machine learning
,”
Energies
12
(
14
),
2716
(
2019
).
91.
C.
Yan
,
Y.
Pan
, and
C. L.
Archer
, “
A general method to estimate wind farm power using artificial neural networks
,”
Wind Energy
22
(
11
),
1421
1432
(
2019
).
92.
J.
Park
and
J.
Park
, “
Physics-induced graph neural network: An application to wind-farm power estimation
,”
Energy
187
,
115883
(
2019
).
93.
H.
Sun
,
C.
Qiu
,
L.
Lu
,
X.
Gao
,
J.
Chen
, and
H.
Yang
, “
Wind turbine power modelling and optimization using artificial neural network with wind field experimental data
,”
Appl. Energy
280
,
115880
(
2020
).
94.
J.
Zhang
and
X.
Zhao
, “
Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning
,”
Appl. Energy
300
,
117390
(
2021
).
95.
J.
Zhang
and
X.
Zhao
, “
Spatiotemporal wind field prediction based on physics-informed deep learning and LiDAR measurements
,”
Appl. Energy
288
,
116641
(
2021
).
96.
J. N.
Sørensen
,
R. F.
Mikkelsen
,
D. S.
Henningson
,
S.
Ivanell
,
S.
Sarmast
, and
S. J.
Andersen
, “
Simulation of wind turbine wakes using the actuator line technique
,”
Philos. Trans. R. Soc., A
373
(
2035
),
20140071
(
2015
).
97.
M.
Abkar
and
F.
Porté-Agel
, “
Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study
,”
Phys. Fluids
27
(
3
),
35104
(
2015
).
98.
P. L.
Houtekamer
and
H. L.
Mitchell
, “
Data assimilation using an ensemble Kalman filter technique
,”
Mon. Weather Rev.
126
(
3
),
796
811
(
1998
).
99.
P.
Orlandi
and
S.
Leonardi
, “
DNS of turbulent channel flows with two-and three-dimensional roughness
,”
J. Turbul.
7
,
N73
(
2006
).
100.
H.
Arbabi
and
I.
Mezic
, “
Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator
,”
SIAM J. Appl. Dyn. Syst.
16
(
4
),
2096
2126
(
2017
).
101.
A.
Ahmad
and
L.
Dey
, “
A k-mean clustering algorithm for mixed numeric and categorical data
,”
Data Knowl. Eng.
63
(
2
),
503
527
(
2007
).
102.
S.
Hochreiter
and
J.
Schmidhuber
, “
Long short-term memory
,”
Neural Comput.
9
(
8
),
1735
1780
(
1997
).
103.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind-turbine array boundary layers
,”
Phys. Fluids
22
(
1
),
015110
(
2010
).
104.
M.
Churchfield
,
S.
Lee
, and
P.
Moriarty
,
Overview of the Simulator for Wind Farm Application (SOWFA)
(
National Renewable Energy Laboratory
,
2012
).
105.
M.
Korda
and
I.
Mezić
, “
On convergence of extended dynamic mode decomposition to the Koopman operator
,”
J. Nonlinear Sci.
28
(
2
),
687
710
(
2018
).
106.
C.
Bak
,
F.
Zahle
,
R.
Bitsche
,
T.
Kim
,
A.
Yde
,
L. C.
Henriksen
,
M. H.
Hansen
,
J. P. A. A.
Blasques
,
M.
Gaunaa
, and
A.
Natarajan
, “
The DTU 10-MW reference wind turbine
,” in
Danish Wind Power Research
,
2013
.
107.
J. E.
Matsson
,
An Introduction to ANSYS Fluent 2021
(
SDC Publications
,
2021
).
108.
G.
Biau
and
E.
Scornet
, “
A random forest guided tour
,”
Test
25
(
2
),
197
227
(
2016
).
109.
R.
Atienza
,
Advanced Deep Learning With Keras: Apply Deep Learning Techniques, Autoencoders, GANs, Variational Autoencoders, Deep Reinforcement Learning, Policy Gradients, and More
(
Packt Publishing Ltd
,
2018
).
110.
C.
Keras
, see http://keras.io for “
Theano-Based Deep Learning Librarycode, https://github.com/fchollet
” (
2015
).
111.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
 et al, “
Tensorflow: Large-scale machine learning on heterogeneous distributed systems
,” arXiv:1603.04467 (
2016
).
112.
S.
El-Asha
,
L.
Zhan
, and
G. V.
Iungo
, “
Quantification of power losses due to wind turbine wake interactions through SCADA, meteorological and wind LiDAR data
,”
Wind Energy
20
(
11
),
1823
1839
(
2017
).
113.
L.
Zhan
,
S.
Letizia
, and
G.
Valerio Iungo
, “
LiDAR measurements for an onshore wind farm: Wake variability for different incoming wind speeds and atmospheric stability regimes
,”
Wind Energy
23
(
3
),
501
527
(
2020
).
114.
M.
Seeger
, “
Gaussian processes for machine learning
,”
Int. J. Neural Syst.
14
(
02
),
69
106
(
2004
).
115.
O.
Hamelijnck
,
W.
Wilkinson
,
N.
Loppi
,
A.
Solin
, and
T.
Damoulas
, “
Spatio-temporal variational Gaussian processes
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc.
,
2021
), Vol.
34
.
116.
M.
Bastankhah
and
F.
Porté-Agel
, “
A new analytical model for wind-turbine wakes
,”
Renewable Energy
70
,
116
123
(
2014
).
117.
L.
Davis
,
Handbook of Genetic Algorithms
(
CumInCAD
,
1991
).
118.
S.
Albawi
,
T. A.
Mohammed
, and
S.
Al-Zawi
, “
Understanding of a convolutional neural network
,” in
International Conference on Engineering and Technology (ICET)
(
IEEE
,
2017
), pp.
1
6
.
119.
J.
Berg
,
J.
Bryant
,
B.
LeBlanc
,
D. C.
Maniaci
,
B.
Naughton
,
J. A.
Paquette
,
B. R.
Resor
,
J.
White
, and
D.
Kroeker
, “
Scaled wind farm technology facility overview
,” AIAA Paper No. 2014-1088,
2014
.
120.
W. Z.
Shen
,
J. H.
Zhang
, and
J. N.
Sørensen
, “
The actuator surface model: A new Navier–Stokes based model for rotor computations
,”
J. Sol. Energy Eng.
131
(
1
),
011002
(
2009
).
121.
A.
Chouldechova
and
T.
Hastie
, “
Generalized additive model selection
,” arXiv:1506.03850 (
2015
).
122.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
 et al, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
123.
C.
Bentéjac
,
A.
Csörgő
, and
G.
Martínez-Muñoz
, “
A comparative analysis of gradient boosting algorithms
,”
Artif. Intell. Rev.
54
(
3
),
1937
1967
(
2021
).
124.
P.
Geurts
,
D.
Ernst
, and
L.
Wehenkel
, “
Extremely randomized trees
,”
Mach. Learn.
63
(
1
),
3
42
(
2006
).
125.
M.
Awad
and
R.
Khanna
, “
Support vector regression
,” in
Efficient Learning Machines
(
Springer
,
2015
), pp.
67
80
.
126.
D.
Maulud
and
A. M.
Abdulazeez
, “
A review on linear regression comprehensive in machine learning
,”
J. Appl. Sci. Technol. Trends
1
(
4
),
140
147
(
2020
).
127.
M.
Sinner
,
E.
Simley
,
J.
King
,
P.
Fleming
, and
L. Y.
Pao
, “
Power increases using wind direction spatial filtering for wind farm control: Evaluation using FLORIS, modified for dynamic settings
,”
J. Renewable Sustainable Energy
13
(
2
),
023310
(
2021
).
128.
D. F.
Specht
, “
A general regression neural network
,”
IEEE Trans. Neural Networks
2
(
6
),
568
576
(
1991
).
129.
T. E.
Oliphant
,
A Guide to NumPy
(
Trelgol Publishing
,
2006
), Vol.
1
.
130.
J.
Cai
,
K.
Xu
,
Y.
Zhu
,
F.
Hu
, and
L.
Li
, “
Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest
,”
Appl. Energy
262
,
114566
(
2020
).
131.
N.
Mansour
,
J.
Kim
, and
P.
Moin
, “
Near-wall k-epsilon turbulence modeling
,”
AIAA J.
27
(
8
),
1068
1073
(
1989
).
132.
B. M.
Wilamowski
and
H.
Yu
, “
Improved computation for Levenberg–Marquardt training
,”
IEEE Trans. Neural Networks
21
(
6
),
930
937
(
2010
).
133.
M. H.
Beale
,
M. T.
Hagan
, and
H. B.
Demuth
,
Deep Learning ToolboxTM Reference
(
The MathWorks
,
Natick, MA
,
2018
).
134.
Y. T.
Wu
and
F.
Porté-Agel
, “
Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm
,”
Renewable Energy
75
,
945
955
(
2015
).
135.
A. C.
Fitch
,
J. B.
Olson
,
J. K.
Lundquist
,
J.
Dudhia
,
A. K.
Gupta
,
J.
Michalakes
, and
I.
Barstad
, “
Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model
,”
Mon. Weather Rev.
140
(
9
),
3017
3038
(
2012
).
136.
M.
Abkar
and
F.
Porté-Agel
, “
A new wind-farm parameterization for large-scale atmospheric models
,”
J. Renewable Sustainable Energy
7
(
1
),
013121
(
2015
).
137.
P.
Volker
,
J.
Badger
,
A. N.
Hahmann
, and
S.
Ott
, “
The explicit wake parametrisation V1.0: A wind farm parametrisation in the mesoscale model WRF
,”
Geosci. Model Dev.
8
(
11
),
3715
3731
(
2015
).
138.
Y.
Pan
and
C. L.
Archer
, “
A hybrid wind-farm parametrization for mesoscale and climate models
,”
Boundary-Layer Meteorol.
168
(
3
),
469
495
(
2018
).
139.
F.
Scarselli
,
M.
Gori
,
A. C.
Tsoi
,
M.
Hagenbuchner
, and
G.
Monfardini
, “
The graph neural network model
,”
IEEE Trans. Neural Networks
20
(
1
),
61
80
(
2008
).
140.
J.
Deng
,
W.
Dong
,
R.
Socher
,
L.-J.
Li
,
K.
Li
, and
L.
Fei-Fei
, “
Imagenet: A large-scale hierarchical image database
,” in
IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2009
), pp.
248
255
.
141.
A.
Krizhevsky
and
G.
Hinton
, “
Learning multiple layers of features from tiny images
,”
Technical Report No. TR-2009
(
2009
).
142.
A. L.
Maas
,
R. E.
Daly
,
T.
Pham
,
Peter
,
D.
Huang
,
N. A.
Ng
, and
C.
Potts
, “
Learning word vectors for sentiment analysis
,” in
49th Annual Meeting of the Association for Computational Linguistics
,
2011
.
143.
A.
Geiger
,
P.
Lenz
, and
R.
Urtasun
, “
Are we ready for autonomous driving? The KITTI vision benchmark suite
,” in
IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2012
), pp.
3354
3361
.
144.
A.
Ntakaris
,
M.
Magris
,
J.
Kanniainen
,
M.
Gabbouj
, and
A.
Iosifidis
, “
Benchmark dataset for mid-price prediction of limit order book data
,”
J. Forecast.
37
,
852
866
(
2018
).
145.
K.
Kanov
,
R.
Burns
,
C.
Lalescu
, and
G.
Eyink
, “
The Johns Hopkins turbulence databases: An open simulation laboratory for turbulence research
,”
Comput. Sci. Eng.
17
(
5
),
10
17
(
2015
).
You do not currently have access to this content.