Adsorption-based cooling system is a cost-effective method of heat conversion. It has the potential to dramatically enhance energy efficiency while also lowering pollutant levels. For this purpose, a solar-powered vapor adsorption refrigeration system (VAdRS) using activated carbon–methanol and zeolite–water as the working pair has been designed and experimentally evaluated. The aim of this experiment was to evaluate the coefficient of performance (COP) and specific cooling power (SCP) of a solar cooling unit by utilizing the optimum minimum and maximum mass concentration ratios. The novel solar-assisted adsorption refrigeration system optimization technique is used in this research to evaluate the optimal performance of the solar-powered VAdRS under various operating scenarios. The experiment was conducted at the optimum minimum and maximum mass concentration ratios of 0.1 and 0.2, respectively. The experimental results show that the activated carbon–methanol adsorption system produces a higher COP value than the zeolite–water adsorption system of 0.49–0.64 and 0.64–0.67 at constant evaporator and condenser temperature, respectively. It also showed that the higher SCP value was revealed in the zeolite–water-based adsorption cooling system as 207.5–217.4 kJ/kg. It was revealed that AC–methanol could be used to operate better in low-generating-temperature conditions. On the other hand, the zeolite–water adsorption system can be used at higher generating temperatures.

1.
Alelyani
,
S. M.
,
Bertrand
,
W. K.
,
Zhang
,
Z.
, and
Phelan
,
P. E.
, “
Experimental study of an evacuated tube solar adsorption cooling module and its optimal adsorbent bed design
,”
Sol. Energy
211
,
183
191
(
2020
).
2.
Allouhi
,
A.
,
Kousksou
,
T.
,
Jamil
,
A.
,
El Rhafiki
,
T.
,
Mourad
,
Y.
, and
Zeraouli
,
Y.
, “
Optimal working pairs for solar adsorption cooling applications
,”
Energy
79
,
235
247
(
2015
).
3.
Almohammadi
,
K. M.
and
Harby
,
K.
, “
Operational conditions optimization of a proposed solar-powered adsorption cooling system: Experimental, modeling, and optimization algorithm techniques
,”
Energy
206
,
118007
(
2020
).
4.
Ambarita
,
H.
and
Kawai
,
H.
, “
Experimental study on solar-powered adsorption refrigeration cycle with activated alumina and activated carbon as adsorbent
,”
Case Stud. Therm. Eng.
7
,
36
46
(
2016
).
5.
Anyanwu
,
E. E.
and
Ezekwe
,
C. I.
, “
Design, construction and test run of a solid adsorption solar refrigerator using activated carbon/methanol, as adsorbent/adsorbate pair
,”
Energy Convers. Manage.
44
(
18
),
2879
2892
(
2003
).
6.
Asif Sha
,
A.
and
Baiju
,
V.
, “
Thermodynamic analysis and performance evaluation of activated carbon-ethanol two-bed solar adsorption cooling system
,”
Int. J. Refrig.
123
,
81
90
(
2021
).
7.
Attalla
,
M.
,
Sadek
,
S.
,
Salem
,
A. M. M.
,
Ibrahim
,
M. S.
, and
Hassan
,
M.
, “
Experimental study of solar powered ice maker using adsorption pair of activated carbon and methanol
,”
Appl. Therm. Eng.
141
,
877
866
(
2018
).
8.
Bahrehmand
,
H.
and
Bahrami
,
M.
, “
Optimized sorber bed heat and mass exchangers for sorption cooling systems
,”
Appl. Therm. Eng.
185
,
116348
(
2021
).
9.
Baker
,
D. K.
and
Kaftanoglu
,
B.
, “
Predicted impact of collector and zeolite choice on the thermodynamic and economic performance of a solar-powered adsorption cooling system
,”
Exp. Heat Transfer
20
(
2
),
103
122
(
2007
).
10.
Balanay
,
J. A. G.
,
Bartolucci
,
A. A.
, and
Lungu
,
C. T.
, “
Adsorption characteristics of activated carbon fibers (ACFs) for toluene: Application in respiratory protection
,”
J. Occup. Environ. Hyg.
11
(
3
),
133
143
(
2014
).
11.
Bhargav
,
H.
,
Ramani
,
B.
, and
Siva Reddy
,
V.
, “
Experimental study on adsorption capacity of an activated carbon-based adsorption water chiller
,”
Int. J. Ambient Energy
40
(
6
),
657
660
(
2019
).
12.
Bouzeffour
,
F.
,
Khelidj
,
B.
, and
Tahar abbes
,
M.
, “
Experimental investigation of a solar adsorption refrigeration system working with silicagel/water pair: A case study for Bou-Ismail solar data
,”
Sol. Energy
131
,
165
175
(
2016
).
13.
Chan
,
K. C.
,
Tso
,
C.
,
Wu
,
C. L.
, and
Chao
,
C. Y. H.
, “
Enhancement of the performance of a zeolite 13X/CaCl2–water adsorption cooling system by improving adsorber design and operation sequence
,”
Energy Build.
158
,
1368
1378
(
2018
).
14.
Cherrad
,
N.
,
Benchabane
,
A.
,
Sedira
,
L.
, and
Rouag
,
A.
, “
Transient numerical model for predicting operating temperatures of solar adsorption refrigeration cycle
,”
Appl. Therm. Eng.
130
,
1163
1174
(
2018
).
15.
Du
,
S. W.
,
Li
,
X. H.
,
Yuan
,
Z. X.
,
Du
,
C. X.
,
Wang
,
W. C.
, and
Liu
,
Z. B.
, “
Performance of solar adsorption refrigeration in system of SAPO-34 and ZSM-5 zeolite
,”
Sol. Energy
138
,
98
104
(
2016
).
16.
Edin Hamrahi
,
S.
,
Goudarzi
,
K.
, and
Yaghoubi
,
M.
, “
Experimental study of the performance of a continues solar adsorption chiller using nano-activated carbon/methanol as working pair
,”
Sol. Energy
173
,
920
927
(
2018
).
17.
Elsayed
,
A.
,
Mahmoud
,
S.
,
Al-Dadah
,
R.
,
Bowen
,
J.
, and
Kaialy
,
W.
, “
Experimental and numerical investigation of the effect of pellet size on the adsorption characteristics of activated carbon/ethanol
,”
Energy Proc.
61
,
2327
2330
(
2014
).
18.
Goyal
,
P.
,
Baredar
,
P.
,
Mittal
,
A.
, and
Siddiqui
,
A. R.
, “
Adsorption refrigeration technology—An overview of theory and its solar energy applications
,”
Renewable Sustainable Energy Rev.
53
,
1389
1410
(
2016
).
19.
Hassan
,
H. Z.
,
Mohamad
,
A. A.
, and
Bennacer
,
R.
, “
Simulation of an adsorption solar cooling system
,”
Energy
36
,
530
537
(
2011
).
20.
Khalil
,
A.
,
El-Agouz
,
E.-S. A.
,
El-Samadony
,
Y. A. F.
, and
Sharaf
,
M. A.
, “
Experimental study of silica gel/water adsorption cooling system using a modified adsorption bed
,”
Sci. Technol. Built Environ.
22
(
1
),
41
49
(
2016
).
21.
Kumar
,
V.
and
Prasad
,
L.
, “
Thermal performance investigation of three sides concave dimple roughened solar air heaters
,”
Sol. Energy
188
,
361
379
(
2019
).
22.
Kumar Ojha
,
M.
,
Kumar Shukla
,
A.
,
Verma
,
P.
, and
Kannojiya
,
R.
, “
Recent progress and outlook of solar adsorption refrigeration systems
,”
Mater. Today: Proc.
46
,
5639
5646
(
2021
).
23.
Li
,
M.
,
Wang
,
R. Z.
,
Xu
,
Y. X.
,
Wu
,
J. Y.
, and
Dieng
,
A. O.
, “
Experimental study on dynamic performance analysis of a flat-plate solar solid-adsorption refrigeration for ice maker
,”
Renewable Energy
27
,
211
221
(
2002
).
24.
Liu
,
Y.
and
Leong
,
K. C.
, “
Numerical modeling of a zeolite/water adsorption cooling system with non-constant condensing pressure
,”
Int. Commun. Heat Mass Transfer
35
(
5
),
618
622
(
2008
).
25.
Liu
,
Y. M.
,
Yuan
,
Z. X.
,
Wen
,
X.
, and
Du
,
C. X.
, “
Evaluation on performance of solar adsorption cooling of silica gel and SAPO-34 zeolite
,”
Appl. Therm. Eng.
182
,
116019
(
2021
).
26.
Mahesh
,
A.
, “
Solar collectors and adsorption materials aspects of cooling system
,”
Renewable Sustainable Energy Rev.
73
,
1300
1312
(
2017
).
27.
Mahesh
,
A.
and
Kaushik
,
S. C.
, “
Solar adsorption refrigeration system using different mass of adsorbents
,”
J. Therm. Anal. Calorim.
111
,
897
903
(
2013
).
28.
Moffat
,
R. J.
, “
Describing the uncertainties in experimental results
,”
Exp. Therm. Fluid Sci.
1
,
3
17
(
1988
).
29.
Najeh
,
G.
,
Slimane
,
G.
,
Souad
,
M.
,
Riad
,
B.
, and
Mohammed
,
E. G.
, “
Performance of silica gel-water solar adsorption cooling system
,”
Case Stud. Therm. Eng.
8
,
337
345
(
2016
).
30.
Pan
,
Q.
,
Peng
,
J.
,
Wang
,
H.
,
Sun
,
H.
, and
Wang
,
R.
, “
Experimental investigation of an adsorption air-conditioner using silica gel-water working pair
,”
Sol. Energy
185
,
64
71
(
2019
).
31.
Pan
,
Q. W.
and
Wang
,
R. Z.
, “
Study on operation strategy of a silica gel-water adsorption chiller in solar cooling application
,”
Sol. Energy
172
,
24
31
(
2018
).
32.
Qasem
,
N. A. A.
and
El-Shaarawi
,
M. A. I.
, “
Improving ice productivity and performance for an activated carbon/methanol solar adsorption ice-maker
,”
Sol. Energy
98
,
523
542
(
2013
).
33.
Robbins
,
T.
and
Garimella
,
S.
, “
An autonomous solar driven adsorption cooling system
,”
Sol. Energy
211
,
1318
1324
(
2020
).
34.
Rouf
,
R. A.
,
Jahan
,
N.
,
Alam
,
K. C. A.
,
Sultan
,
A. A.
,
Saha
,
B. B.
, and
Saha
,
S. C.
, “
Improved cooling capacity of a solar heat driven adsorption chiller
,”
Case Stud. Therm. Eng.
17
,
100568
(
2020
).
35.
Saeidi
,
N.
and
Lotfollahi
,
M. N.
, “
Effects of powder activated carbon particle size on adsorption capacity and mechanical properties of the semi activated carbon fiber
,”
Fibers Polym.
16
,
543
549
(
2015
).
36.
Saha
,
D.
and
Grappe
,
H. A.
, “
Adsorption properties of activated carbon fibers
,”
in Activated Carbon Fiber and Textiles
, Woodhead Publishing Series in Textiles, edited by
J. Y.
Chen
(
Woodhead Publishing
,
2017
), pp.
143
165
.
37.
San
,
J.-Y.
and
Lin
,
W.-M.
, “
Comparison among three adsorption pairs for using as the working substances in a multi-bed adsorption heat pump
,”
Appl. Therm. Eng.
28
,
988
997
(
2008
).
38.
Solmuş
,
I.
,
Kaftanoglu
,
B.
,
Yamali
,
C.
, and
Baker
,
D.
, “
Experimental investigation of a natural zeolite–water adsorption cooling unit
,”
Appl. Energy
88
(
11
),
4206
4213
(
2011
).
39.
Solmuş
,
I.
,
Yamali
,
C.
,
Kaftanoglu
,
B.
,
Baker
,
D.
, and
Çaglar
,
A.
, “
Adsorption properties of a natural zeolite–water pair for use in adsorption cooling cycles
,”
Appl. Energy
87
(
6
),
2062
2067
(
2010
).
40.
Tso
,
C. Y.
,
Chan
,
K. C.
,
Chao
,
C. Y. H.
, and
Wu
,
C. L.
, “
Experimental performance analysis on an adsorption cooling system using zeolite 13X/CaCl2 adsorbent with various operation sequences
,”
Int. J. Heat Mass Transfer
85
,
343
355
(
2015
).
41.
Tso
,
C. Y.
,
Fu
,
S. C.
, and
Chao
,
C. Y. H.
, “
Modeling a solar-powered double bed novel composite adsorbent (silica activated carbon/CaCl2)–water adsorption chiller
,”
Build. Simul.
7
,
185
196
(
2014
).
42.
Wang
,
L. W.
,
Wang
,
R. Z.
,
Lu
,
Z. S.
,
Chen
,
C. J.
,
Wang
,
K.
, and
Wu
,
J. Y.
, “
The performance of two adsorption ice making test units using activated carbon and a carbon composite as adsorbents
,”
Carbon
44
,
2671
2680
(
2006
).
43.
Wang
,
R. Z.
,
Wu
,
J. Y.
,
Xu
,
Y. X.
, and
Wang
,
W.
, “
Performance researches and improvements on heat regenerative adsorption refrigerator and heat pump
,”
Energy Convers. Manage.
42
,
233
249
(
2001
).
44.
Yoda
,
T.
,
Shibuya
,
K.
, and
Myoubudani
,
H.
, “
Preparation and adsorption performance evaluation of activated carbon fibers derived from rayon
,”
SN Appl. Sci.
1
,
1029
(
2019
).
45.
Yu
,
Y.
,
Pan
,
Q. W.
, and
Wang
,
L. W.
, “
A small-scale silica gel-water adsorption system for domestic air conditioning and water heating by the recovery of solar energy
,”
Front. Energy
14
,
328
336
(
2020
).
46.
Zhang
,
G.
,
Wang
,
D. C.
,
Zhang
,
J. P.
,
Han
,
Y. P.
, and
Sun
,
W.
, “
Simulation of operating characteristics of the silica gel–water adsorption chiller powered by solar energy
,”
Sol. Energy
85
(
7
),
1469
1478
(
2011
).
47.
Zhang
,
L. Z.
, “
Design and testing of an automobile waste heat adsorption cooling system
,”
Appl. Therm. Eng.
20
,
103
114
(
2000
).
48.
Zhu
,
L. Q.
,
Tso
,
C. Y.
,
Chan
,
K. C.
,
Wu
,
C. L.
,
Christopher
,
Y.
,
Chao
,
H.
,
Chen
,
J.
,
He
,
W.
, and
Luo
,
S. W.
, “
Experimental investigation on composite adsorbent—Water pair for a solar-powered adsorption cooling system
,”
Appl. Therm. Eng.
131
,
649
659
(
2018
).
You do not currently have access to this content.