An airfoil with good stability and a high lift-drag ratio can effectively improve the stability and aerodynamic performance of the wind turbine blade. Inspired by the excellent gliding performance of the seagull wings, the unique profile and structure of the seagull wings are first extracted to restructure the bionic airfoil. Then, the flow control accessory combined the bionic flap and Gurney flap is introduced to further improve the static and dynamic aerodynamic performance of bionic seagull airfoil. Under different Reynolds numbers, the effects of the combined flow control accessory on the bionic seagull airfoil are investigated using the numerical simulation method. Based on the analysis of flow fields, the flow control mechanism of the combined flow control accessory on the stall characteristics of bionic seagull airfoil is revealed. The results show that for the static stall characteristics, when the flow control accessory is applied to the bionic airfoil, the static lift coefficient of the airfoil is increased by 15% at Reynolds numbers of Re 2.0 × 105. For the dynamic stall characteristics, the lift coefficient of the airfoil is improved during the whole dynamic stall process, the maximum is increased by 13.12%, and the area of the dynamic hysteresis loop is reduced.

1.
H.
Lund
, “
Renewable energy strategies for sustainable development
,”
Energy
32
(
6
),
912
919
(
2007
).
2.
R.
Radespiel
,
M.
Burnazzi
,
M.
Casper
, and
P.
Scholz
, “
Active flow control for high lift with steady blowing
,”
J. Aeronaut. Sci.
120
(
1223
),
171
200
(
2016
).
3.
P.
Vrchota
,
A.
Pracha
,
S. H.
Peng
,
M.
Tormalm
, and
P.
Eliasson
, “
Numerical studies of active flow control on wing tip extension
,”
Aircr. Eng. Aerosp. Technol.
91
(
2
),
346
352
(
2019
).
4.
S. E.
James
,
A.
Suryan
,
J. J.
Sebastian
, and
A.
Mohan
, “
Comparative study of boundary layer control around an ordinary airfoil and a high lift airfoil with secondary blowing
,”
Comput. Fluids
164
,
50
63
(
2017
).
5.
J. A. C.
Kentfied
and
E. J.
Clavelle
, “
The flow physics of Gurney flaps, devices for improving turbine blade performance
,”
Wind Eng.
17
(
1
),
24
33
(
1993
).
6.
D. C.
Mccormick
, “
Shock boundary-layer interaction control with vortex generators and passive cavity
,”
AIAA J.
31
(
1
),
91
96
(
1993
).
7.
J. A.
Cole
,
B. A. O.
Vieira
,
J. G.
Coder
,
A.
Premi
, and
M. D.
Maughmer
, “
Experimental investigation into the effect of gurney flaps on various airfoils
,”
J. Aircraft
50
(
4
),
1287
1294
(
2013
).
8.
G.
Sun
,
Y.
Wang
,
Y. D.
Xie
,
K.
Lv
, and
R. Y.
Sheng
, “
Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil
,”
Energy
225
,
120206
(
2021
).
9.
H. T.
Zhu
,
W. X.
Hao
,
C.
Li
,
S.
Luo
,
Q. S.
Liu
, and
C.
Gao
, “
Effect of geometric parameters of Gurney flap on performance enhancement of straight-bladed vertical axis wind turbine
,”
Renewable Energy
165
,
464
480
(
2021
).
10.
Y.
Amini
,
M.
Liravi
, and
E.
Izadpanah
, “
The effects of Gurney flap on the aerodynamic performance of NACA 0012 airfoil in the rarefied gas flow
,”
Comput. Fluids
170
,
93
105
(
2018
).
11.
X.
He
,
J. J.
Wang
,
M. Q.
Yang
,
D. L.
Ma
,
C.
Yan
, and
P. Q.
Liu
, “
Numerical simulation of Gurney flap on SFYT15 thick airfoil
,”
Theor. Appl. Mech. Lett.
6
(
6
),
286
292
(
2016
).
12.
I.
Aramendia
,
U.
Fernandez-Gamiz
,
E.
Zulueta
,
A.
Saenz-Aguirre
, and
D.
Teso-Fz-Betoño
, “
Parametric study of a gurney flap implementation in a DU91W(2)250 airfoil
,”
Energies
12
(
2
),
294
(
2019
).
13.
T.
Nilavarasan
,
G. N.
Joshi
, and
S.
Chandel
, “
Aerodynamic performance characteristics of NACA 0010 cascade with gurney flaps
,”
Int. J. Turbo Jet. Eng.
38
(
3
),
263
272
(
2021
).
14.
A. G.
Domel
,
M.
Saadat
,
J. C.
Weaver
,
H.
Haj-Hariri
,
K.
Bertoldi
, and
G. V.
Lauder
, “
Shark skin-inspired designs that improve aerodynamic performance
,”
J. R. Soc. Interface
15
,
20170828
(
2018
).
15.
D. C.
Chen
,
Y.
Liu
,
H. W.
Chen
, and
D. Y.
Zhang
, “
Bio-inspired drag reduction surface from sharkskin
,”
Biosurf. Biotribol.
4
(
2
),
39
45
(
2018
).
16.
M. D.
Ibrahim
,
S. N. A.
Amran
,
A.
Zulkharnain
, and
Y.
Sunamiet
, “
Streamlined vessels for speedboats: Macro modifications of shark skin design applications
,”
AIP Conf. Proc.
1929
,
020023
(
2018
).
17.
Y. N.
Yang
,
X.
Xu
,
B.
Zhang
,
W.
Zheng
, and
Y. D.
Wang
, “
Bionic design for the aerodynamic shape of a stratospheric airship
,”
Aerosp. Sci. Technol.
98
,
105664
(
2020
).
18.
S. X.
Huang
,
Y.
Hu
, and
Y.
Wang
, “
Research on aerodynamic performance of a novel dolphin head-shaped bionic airfoil
,”
Energy
214
,
118179
(
2021
).
19.
X.
Hua
,
C. H.
Zhang
,
J. D.
Wei
,
X. J.
Hu
, and
H. L.
Wei
, “
Wind turbine bionic blade design and performance analysis
,”
J. Vis. Commun. Image Represent.
60
,
258
265
(
2019
).
20.
M.
Li
,
J. H.
Wu
, and
X. Y.
Yuan
, “
Wall suction & slip effect of spherical-grooved bionic metasurface for controlling the aerodynamic noise
,”
Appl. Acoust.
171
,
107537
(
2021
).
21.
D.
Li
,
X. M.
Liu
,
F. J.
Hu
, and
L.
Wang
, “
Effect of trailing-edge serrations on noise reduction in a coupled bionic aerofoil inspired by barn owls
,”
Bioinspir. Biomim.
15
,
016009
(
2020
).
22.
A.
Bodling
and
A.
Sharma
, “
Numerical investigation of low-noise airfoils inspired by the down coat of owls
,”
Bioinspir. Biomim.
14
,
16013
(
2018
).
23.
D.
Arivoli
,
I.
Singh
, and
P.
Suriyanarayanan
, “
Rudimentary emulation of covert feathers on low-AR wings for poststall lift enhancement
,”
AIAA J.
58
(
2
),
501
516
(
2020
).
24.
Z.
Fang
,
C. L.
Gong
,
A.
Revell
,
G.
Chen
,
A.
Harwood
, and
J.
O'Connor
, “
Passive separation control of a NACA0012 airfoil via a flexible flap
,”
Phys. Fluids
31
(
10
),
101904
(
2019
).
25.
C. F.
Duan
,
J.
Waite
, and
A. A.
Wissa
, “
Design optimization of a covert feather-inspired deployable structure for increased lift
,” AIAA Paper No.
2018
3174
.
26.
Z. Z.
Zhan
,
Z.
Ye
,
X. H.
Xu
, and
Y. J.
Han
, “
Influence of structural parameters on aerodynamic performance of biomimetic finned wings
,”
J. Harbin Inst. Technol.
51
(
7
),
171
177
(
2019
) (in Chinese).
27.
J.
Johnston
and
A.
Gopalarathnam
, “
Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil
,”
Bioinspir. Biomim.
7
(
3
),
036003
(
2012
).
28.
T. S.
Liu
,
K.
Kuykendoll
,
R.
Rhew
, and
S.
Jones
, “
Avian wing geometry and kinematics
,”
AIAA J.
44
(
5
),
954
963
(
2006
).
29.
X.
Hua
, “
Research on the aerodynamic characteristics of wings of the seagull and the bionic blade of wind turbines design application
,” Ph.D. thesis,
Jilin University
,
Changchun, Jilin
,
2013
.
30.
L. M.
Wu
,
L.
Wang
,
X. M.
Liu
,
L.
Ma
, and
G.
Xi
, “
Numerical simulation on the static and dynamic aerodynamic characteristics of bionic seagull airfoil
,”
J. Xi'an Jiaotong Univ.
54
(
12
),
88
97
(
2020
) (in Chinese).
31.
H. S.
Yoon
,
P. A.
Hung
,
J. H.
Jung
, and
M. C.
Kim
, “
Effect of the wavy leading edge on hydrodynamic characteristics for flow around low aspect ratio wing
,”
Comput. Fluids
49
,
276
289
(
2011
).
32.
Y.
Yan
,
E.
Avital
,
J.
Williams
, and
J. H.
Cui
, “
CFD analysis for the performance of micro-vortex generator on aerofoil and vertical axis turbine
,”
J. Renewable Sustainable Energy
11
,
043302
(
2019
).
33.
R. B.
Gao
,
K.
Chen
,
Y. X.
Li
, and
W. W.
Yao
, “
Investigation on aerodynamic performance of wind turbine blades coupled with airfoil and herringbone groove structure
,”
J. Renewable Sustainable Energy
13
,
053301
(
2021
).
34.
D.
Li
and
X. M.
Liu
, “
Numerical study on aerodynamic performance and noise characteristic of several bionic airfoils
,”
J. Eng. Thermophys.
36
(
12
),
2629
2632
(
2015
) (in Chinese).
35.
X.
Hua
,
R.
Gu
,
J. F.
Jin
,
Y. R.
Liu
,
Y.
Ma
,
Q.
Cong
, and
Y.
Zheng
, “
Numerical simulation and aerodynamic performance comparison between seagull aerofoil and NACA 4412 aerofoil under low-Reynolds
,”
Adv. Nat. Sci.
3
(
2
),
244
250
(
2010
).
36.
L. M.
Qiao
,
X. S.
Liu
,
Y. B.
Yang
,
R.
Gu
, and
Y. J.
Lu
, “
Performance analysis of bionic airfoil on the small unmanned plane
,”
Adv. Mater. Res.
655–657
(
1
),
24
27
(
2013
).
37.
A.
Singhal
,
D.
Castañeda
,
N.
Webb
, and
M.
Samimy
, “
Control of dynamic stall over a NACA0015 airfoil using plasma actuators
,”
AIAA J.
56
(
1
),
1
12
(
2018
).
You do not currently have access to this content.