This paper proposes a novel optimization method for wind power investment to find the optimal location and sizing of multiple wind farms considering both the economic and security aspects of power system operation and planning. The proposed approach maintains the system's security against transient instabilities while improving the voltage profile in the network and minimizing the cost resulting from the investment of wind farms and their operation with thermal units. The transient stability assessment is performed for the power system, considering the uncertainties due to its wind power generation. To model these uncertainties, Taguchi's orthogonal array testing method is utilized. Using Taguchi's method, all the uncertainties in an optimization problem are modeled with only a few representative testing scenarios, and thus, it provides computation efficacy. Moreover, an enhanced hybrid algorithm combining the particle swarm and gray-wolf optimization methods is developed to obtain efficient results in solving the problems formulated. The proposed wind power investment approach is implemented on the New England 39-bus test system, and the results show its effectiveness in providing a reliable and economic wind investment strategy for both investors and operators in the long-term operation and planning of the power system.

1.
Danish Energy Agency (DEA)
, see https://www.ft.dk/samling/20121/almdel/KEB/bilag/90/1199717.pdf for “
Energy Policy in Denmark
” (
2012
).
2.
See https://ec.europa.eu/energy/sites/ener/files/documents/2012_energy_roadmap_2050_en_0.pdf for “
European Commission, Energy Roadmap 2050
” (
2011
).
3.
L.
Baringo
and
A. J.
Conejo
, “
Transmission and wind power investment
,”
IEEE Trans. Power Syst.
27
,
885
(
2012
).
4.
F.
Alismail
,
P.
Xiong
, and
C.
Singh
, “
Optimal wind farm allocation in multi-area power systems using distributionally robust optimization approach
,”
IEEE Trans. Power Syst.
33
,
536
(
2018
).
5.
S.
Nikkhah
,
K.
Jalilpoor
,
E.
Kianmehr
, and
G. B.
Gharehpetian
, “
Optimal wind turbine allocation and network reconfiguration for enhancing resiliency of system after major faults caused by natural disaster considering uncertainty
,”
IET Renewable Power Gener.
12
,
1413
(
2018
).
6.
M.-A.
Akbari
,
J.
Aghaei
, and
M.
Barani
, “
Convex probabilistic allocation of wind generation in smart distribution networks
,”
IET Renewable Power Gener.
11
,
1211
(
2017
).
7.
S.
Nikkhah
and
A.
Rabiee
, “
Optimal wind power generation investment, considering voltage stability of power systems
,”
Renewable Energy
115
,
308
(
2018
).
8.
A.
Erduman
,
B.
Uzunoğlu
,
B.
Kekezoğlu
 et al., “
Mesoscale wind farm placement via linear optimization constrained by power system and techno-economics
,”
J. Mod. Power Syst. Clean Energy
9
(
2
),
356
(
2021
).
9.
M. T.
Askari
,
M. Z. A. A.
Kadir
,
M.
Tahmasebi
 et al., “
Modeling optimal long-term investment strategies of hybrid wind-thermal companies in restructured power market
,”
J. Mod. Power Syst. Clean Energy
7
(
5
),
1267
(
2019
).
10.
P.
Prakash
and
D. K.
Khatod
, “
Optimal sizing and siting techniques for distributed generation in distribution systems: A review
,”
Renewable Sustainable Energy Rev.
57
,
111
(
2016
).
11.
B.
Kroposki
,
P. K.
Sen
, and
K.
Malmedal
, “
Optimum sizing and placement of distributed and renewable energy sources in electric power distribution systems
,”
IEEE Trans. Ind. Appl.
49
,
2741
(
2013
).
12.
M. M.
Othman
,
W.
El-Khattam
,
Y. G.
Hegazy
, and
A. Y.
Abdelaziz
, “
Optimal placement and sizing of distributed generators in unbalanced distribution systems using supervised big bang-big crunch method
,”
IEEE Trans. Power Syst.
30
,
911
(
2015
).
13.
A. A.
Abdelsalam
,
A. A.
Zidan
, and
E. F.
El-Saadany
, “
Optimal DG allocation in radial distribution systems with high penetration of non-linear loads
,”
Electr. Power Compon. Syst.
43
,
1487
(
2015
).
14.
S.
Cheng
,
M.-Y.
Chen
, and
P. J.
Fleming
, “
Improved multi-objective particle swarm optimization with preference strategy for optimal DG integration into the distribution system
,”
Neurocomputing
148
,
23
(
2015
).
15.
A.
Moradi
,
Y.
Alinejad-Beromi
, and
K.
Kiani
, “
Multi-objective transmission expansion planning with allocation of fixed series compensation under uncertainties
,”
Int. Trans. Electr. Energy Syst.
27
,
e2417
(
2017
).
16.
T.
Han
,
Y.
Chen
,
J.
Ma
,
Y.
Zhao
, and
Y.
Chi
, “
Surrogate modeling-based multi-objective dynamic VAR planning considering short-term voltage stability and transient stability
,”
IEEE Trans. Power Syst.
33
,
622
(
2018
).
17.
A. R.
Jordehi
, “
Allocation of distributed generation units in electric power systems: A review
,”
Renewable Sustainable Energy Rev.
56
,
893
(
2016
).
18.
M. A.
Chowdhury
,
W.
Shen
,
N.
Hosseinzadeh
, and
H. R.
Pota
, “
Transient stability of power system integrated with doubly fed induction generator wind farms
,”
IET Renewable Power Gener.
9
,
184
(
2015
).
19.
R. K.
Roy
,
Design of Experiments Using the Taguchi Approach
(
John Wiley & Sons Inc
.,
New York
,
2001
).
20.
Y.
Xu
,
M.
Yin
,
Z. Y.
Dong
,
R.
Zhang
,
D. J.
Hill
, and
Y.
Zhang
, “
Robust dispatch of high wind power-penetrated power systems against transient instability
,”
IEEE Trans. Power Syst.
33
,
174
(
2018
).
21.
A.
Ayvaz
and
V. M. I.
Genc
, “
Information‐gap decision theory based transient stability constrained optimal power flow considering the uncertainties of wind energy resources
,”
IET Renewable Power Gener.
14
,
1946
(
2020
).
22.
K.
Hussain
,
M. N.
Mohd Salleh
,
S.
Cheng
, and
Y.
Shi
, “
Metaheuristic research: A comprehensive survey
,”
Artif. Intell. Rev.
52
,
2191
(
2019
).
23.
S.
Mirjalili
,
S. M.
Mirjalili
, and
A.
Lewis
, “
Grey wolf optimizer
,”
Adv. Eng. Software
69
,
46
(
2014
).
24.
Z.
Zhang
,
C.
Huang
,
D.
Ding
,
S.
Tang
,
B.
Han
, and
H.
Huang
, “
Hummingbirds optimization algorithm-based particle filter for maneuvering target tracking
,”
Nonlinear Dyn.
97
,
1227
(
2019
).
25.
S.
Mirjalili
and
A.
Lewis
, “
The whale optimization algorithm
,”
Adv. Eng. Software
95
,
51
(
2016
).
26.
S.
Li
,
H.
Chen
,
M.
Wang
,
A. A.
Heidari
, and
S.
Mirjalili
, “
Slime mould algorithm: A new method for stochastic optimization
,”
Future Gener. Comput. Syst.
111
,
300
(
2020
).
27.
Y.
Yang
,
H.
Chen
,
A. A.
Heidari
, and
A. H.
Gandomi
, “
Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts
,”
Expert Syst. Appl.
177
,
114864
(
2021
).
28.
J.-S.
Chou
and
D.-N.
Truong
, “
A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean
,”
Appl. Math. Comput.
389
,
125535
(
2021
).
29.
B.
Abdollahzadeh
,
F. S.
Gharehchopogh
, and
S.
Mirjalili
, “
African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems
,”
Comput. Ind. Eng.
158
,
107408
(
2021
).
30.
L.
Abualigah
,
A.
Diabat
,
S.
Mirjalili
,
M. A.
Elaziz
, and
A. H.
Gandomi
, “
The arithmetic optimization algorithm
,”
Comput. Methods Appl. Mech. Eng.
376
,
113609
(
2021
).
31.
S.
Mirjalili
, “
SCA: A sine cosine algorithm for solving optimization problems
,”
Knowl.-Based Syst.
96
,
120
(
2016
).
32.
J.
Zhang
,
M.
Xiao
,
L.
Gao
, and
Q.
Pan
, “
Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems
,”
Appl. Math. Modell.
63
,
464
(
2018
).
33.
R. V.
Rao
,
V. J.
Savsani
, and
D. P.
Vakharia
, “
Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
,”
Comput.-Aided Des.
43
,
303
(
2011
).
34.
J.
Kennedy
and
R.
Eberthart
, “
Particle swarm optimization
,” in
Proceedings of the 1995 IEEE International Conference on Neural Networks
, Perth, Australia, 1942 (
IEEE
,
1995
), pp.
1942
1948
.
35.
A. R.
Jordehi
and
J.
Jasni
, “
Parameter selection in particle swarm optimisation: A survey
,”
J. Exp. Theor. Artif. Intell.
25
,
527
(
2013
).
36.
J.
Riget
and
J. S.
Vesterstom
,
A Diversity-Guided Particle Swarm Optimizer—The ARPSO
(
EVALife, Ny Munkegade
,
Denmark
,
2002
).
37.
See https://www.york.ac.uk/depts/maths/tables/orthogonal.htm for “
The University of York, Orthogonal Arrays (Taguchi Designs)
” (last accessed December 20,
2020
).
38.
Danish Energy Agency
, see https://ens.dk/sites/ens.dk/files/Globalcooperation/wind_project_development_roadmap.pdf for “
Wind Project Development Roadmap
” (
2018
).
39.
K.
Knezović
,
A.
Soroudi
,
A.
Keane
, and
M.
Marinelli
, “
Robust multi-objective PQ scheduling for electric vehicles in flexible unbalanced distribution grids
,”
IET Gener. Transm. Distrib.
11
,
4031
(
2017
).
40.
M. A.
Pai
,
Energy Function Analysis for Power System Stability
(
Kluwer
,
Norwell, MA
,
1989
).
41.
A.
Zerigui
,
L.‐A.
Dessaint
,
R.
Hannat
,
R. T. F.
Ah King
, and
I.
Kamwa
, “
Statistical approach for transient stability constrained optimal power flow
,”
IET Gener. Transm. Distrib.
9
,
1856
(
2015
).
42.
A. R.
Jordehi
, “
Enhanced leader PSO (ELPSO): A new PSO variant for solving global optimisation problems
,”
Appl. Soft Comput.
26
,
401
(
2015
).
43.
M. H.
Nadimi-Shahraki
,
S.
Taghian
, and
S.
Mirjalili
, “
An improved grey wolf optimizer for solving engineering problems
,”
Expert Syst. Appl.
166
,
113917
(
2021
).
44.
C.
Ghenai
, see https://www.intechopen.com for “
Life Cycle Analysis of Wind Turbine
” (last accessed December 18,
2020
).
45.
Open Energy Information (OpenEI)
, see https://openei.org/apps/TCDB for “
Transparent cost database: Capacity factor
” (last accessed December 18,
2020
).
46.
E.
Denny
and
M.
O'Malley
, “
Quantifying the total net benefits of grid integrated wind
,”
IEEE Trans. Power Syst.
22
,
605
(
2007
).
47.
I. A.
Hiskens
, “
Dynamics of type-3 wind turbine generator models
,”
IEEE Trans. Power Syst.
27
,
465
(
2012
).
You do not currently have access to this content.