This study presents performance variations of a solar photovoltaic/thermal (PV/T) hybrid using spectral beam splitting (SBS) techniques. Compared with conventional solar PV/T hybrids (the one-sun flat-plate PV/T hybrid), the proposed hybrid simultaneously produces electricity and relatively higher grades of thermal energy. The majority of the studies related to SBS solar PV/T hybrids are in the early stages of design or proof-of-concept. Therefore, the proposed hybrid's operating characteristics must be investigated. This study provides comprehensive information about the influence of the main operating parameters on the proposed hybrid system's performance. The main operating parameters considered in this parametric study are solar irradiance, ambient temperature, thermal fluid mass flow rate, and inlet fluid temperature. While these parameters were well known to affect most solar technologies' performance, few studies have reported the extent of their impact on SBS solar PV/T hybrids. The results show that the ambient temperature is the greatest influence on the hybrid efficiency. When the ambient temperature increases from 0 °C to 40 °C, the hybrid efficiency decreases from 71.5% (the highest) to 63.7%. The overall efficiency of the hybrid was strongly dependent on the hybrid's PV component. As compared with the hybrid's parabolic trough collector (PTC) component, the PV performance was highly influenced by operating conditions. Nonetheless, compared with the original system design (pure PTC and pure PV), these operating parameters have relatively low impact on both PTC and PV in the hybrid system.

1.
E.
Radziemska
, “
The effect of temperature on the power drop in crystalline silicon solar cells
,”
Renewable Energy
28
(
1
),
1
12
(
2003
).
2.
A.
Ibrahim
,
M. Y.
Othman
,
M. H.
Ruslan
,
S.
Mat
, and
K.
Sopian
, “
Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors
,”
Renewable Sustainable Energy Rev.
15
(
1
),
352
365
(
2011
).
3.
V. V.
Tyagi
,
S. C.
Kaushik
, and
S. K.
Tyagi
, “
Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology
,”
Renewable Sustainable Energy Rev.
16
(
3
),
1383
1398
(
2012
).
4.
P.
Dwivedi
,
K.
Sudhakar
,
A.
Soni
,
E.
Solomin
, and
I.
Kirpichnikova
, “
Advanced cooling techniques of P.V. modules: A state of art
,”
Case Stud. Therm. Eng.
21
,
100674
(
2020
).
5.
A.
Mojiri
,
R.
Taylor
,
E.
Thomsen
, and
G.
Rosengarten
, “
Spectral beam splitting for efficient conversion of solar energy—A review
,”
Renewable Sustainable Energy Rev.
28
,
654
663
(
2013
).
6.
X.
Ju
,
C.
Xu
,
X.
Han
,
X.
Du
,
G.
Wei
, and
Y.
Yang
, “
A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology
,”
Appl. Energy
187
,
534
563
(
2017
).
7.
C.
Strümpel
,
M.
McCann
,
G.
Beaucarne
 et al., “
Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials
,”
Sol. Energy Mater. Sol. Cells
91
(
4
),
238
249
(
2007
).
8.
S.
Jiang
,
P.
Hu
,
S.
Mo
, and
Z.
Chen
, “
Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology
,”
Sol. Energy Mater. Sol. Cells
94
(
10
),
1686
1696
(
2010
).
9.
F.
Crisostomo
,
R. A.
Taylor
,
T.
Zhang
 et al., “
Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector
,”
Renewable Energy
72
,
79
87
(
2014
).
10.
F.
Crisostomo
,
R. A.
Taylor
,
D.
Surjadi
,
A.
Mojiri
,
G.
Rosengarten
, and
E. R.
Hawkes
, “
Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector
,”
Appl. Energy
141
,
238
246
(
2015
).
11.
T. U.
Ulavi
,
J. H.
Davidson
, and
T.
Hebrink
, “
Analysis of a hybrid PV/T concept based on wavelength selective mirror films
,”
J. Sol. Energy Eng.
136
(
3
),
31009
(
2014
).
12.
Z. J.
Yu
,
K. C.
Fisher
,
B. M.
Wheelwright
,
R. P.
Angel
, and
Z. C.
Holman
, “
PVMirror: A new concept for tandem solar cells and hybrid solar converters
,”
IEEE J. Photovoltaics
5
(
6
),
1791
1799
(
2015
).
13.
N. J. Y.
Liew
and
H.-J.
Lee
, “
Numerical analysis of hybrid photovoltaic-thermal systems utilizing different spectral bandpass filters
,”
Renewable Energy
144
,
15
30
(
2019
).
14.
R.
Wingert
,
H.
O'Hern
,
M.
Orosz
,
P.
Harikumar
,
K.
Roberts
, and
T.
Otanicar
, “
Spectral beam splitting retrofit for hybrid PV/T using existing parabolic trough power plants for enhanced power output
,”
Sol. Energy
202
,
1
9
(
2020
).
15.
K.
Wang
,
A. M.
Pantaleo
,
M.
Herrando
 et al., “
Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms
,”
Renewable Energy
159
,
1047
1065
(
2020
).
16.
V.
Dudley
,
G.
Kolb
,
M.
Sloan
, and
D.
Kearney
, “
SEGS LS2 solar collector—Test results
,”
Sandia National Laboratory Report No. SANDIA94-1884
,
1994
.
17.
K.
Fisher
,
Z. (J.)
Yu
,
R.
Striling
, and
Z.
Holman
, “
PVMirrors: Hybrid PV/CSP collectors that enable lower LCOEs
,”
AIP Conf. Proc.
1850
(
1
),
20004
(
2017
).
18.
A.
Haji‐Sheikh
and
J. R.
Howell
, “
Monte Carlo methods
,”
Handbook of Numerical Heat Transfer
(
Wiley
,
2000
), pp.
249
295
.
19.
H. J.
Lee
,
J. K.
Kim
,
S. N.
Lee
, and
Y. H.
Kang
, “
Numerical study on optical performances of the first central-receiver solar thermal power plant in Korea
,”
J. Mech. Sci. Technol.
30
(
4
),
1911
1921
(
2016
).
20.
S. A.
Kalogirou
,
Solar Energy Engineering: Processes and Systems
(
Academic Press
,
2013
).
21.
P.
Gilman
,
N. A.
DiOrio
,
J. M.
Freeman
,
S.
Janzou
,
A.
Dobos
, and
D.
Ryberg
, “
SAM photovoltaic model technical reference 2016 update
,”
Report No. NREL/TP-6A20-67399
(
National Renewable Energy Lab. (NREL
),
Golden, CO
,
2018
).
22.
M.
Mattei
,
G.
Notton
,
C.
Cristofari
,
M.
Muselli
, and
P.
Poggi
, “
Calculation of the polycrystalline PV module temperature using a simple method of energy balance
,”
Renewable Energy
31
(
4
),
553
567
(
2006
).
23.
D.
Dirnberger
,
G.
Blackburn
,
B.
Müller
, and
C.
Reise
, “
On the impact of solar spectral irradiance on the yield of different PV technologies
,”
Sol. Energy Mater. Sol. Cells
132
,
431
442
(
2015
).
24.
J. A.
Duffie
and
W. A.
Beckman
,
Solar Engineering of Thermal Processes
(
John Wiley and Sons
,
2013
).
25.
T. L.
Bergman
,
A. S.
Lavine
, and
F. P.
Incropera
,
Fundamentals of Heat and Mass Transfer
, 7th ed. (
John Wiley and Sons, Inc.
,
2011
).
26.
C.
Gueymard
,
SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment
(
Florida Solar Energy Center
,
Cocoa, FL
,
1995
).
27.
B. J.
Huang
, “
Performance rating method of thermosyphon solar water heaters
,”
Sol. Energy
50
(
5
),
435
440
(
1993
).
28.
B. J.
Huang
,
T. H.
Lin
,
W. C.
Hung
, and
F. S.
Sun
, “
Performance evaluation of solar photovoltaic/thermal systems
,”
Sol. Energy
70
(
5
),
443
448
(
2001
).
29.
A.
Cuellar
,
F.
Bussieres
, and
C.
Marquez
, “
CSP parabolic trough report: Costs and performance
,” Technical Report (
CSP Today
,
2011
).
30.
H.-J.
Lee
,
J.-K.
Kim
,
S.-N.
Lee
, and
Y.-H.
Kang
, “
Consistent heat transfer analysis for performance evaluation of multichannel solar absorbers
,”
Sol. Energy
86
(
5
),
1576
1585
(
2012
).

Supplementary Material

You do not currently have access to this content.