This paper explores cost-optimal pathways to 100% renewable power systems for the U.S. building stock. We show that long-duration misalignments of supply and demand, spanning from multi-day to seasonal timescales, present a dominant challenge that must be addressed to meet real-time 100% renewable targets. While long-duration misalignments can be addressed through energy storage, we show that alternative and readily available solutions that are more cost-effective should be considered first. Through a techno-economic analysis, we identify cost-optimal, region-dependent, supply-side, and demand-side strategies that reduce, and in some U.S. regions eliminate, the otherwise substantial capacities and associated costs of long-duration energy storage. Investigated supply-side strategies include optimal mixes of renewable portfolios and oversized generation capacities. Considered demand-side strategies include building load flexibility and building energy efficiency investments. Our results reveal that building energy efficiency measures can reduce long-duration storage requirements at minimum total investment costs. In addition, oversizing and diversifying renewable generation can play a critical role in reducing storage requirements, remaining cost effective even when accounting for curtailed generation. We identify regionally dependent storage cost targets and show that for emerging long-duration energy storage innovations to achieve broad adoption, their costs will need to compete with the decreasing cost of renewables. The findings of this research are particularly important given that most long-duration storage technologies are currently either uneconomical, geologically constrained, or still underdeveloped.

1.
W.
Cole
,
N.
Gates
,
T.
Mai
,
D.
Greer
, and
P.
Das
, “
2019 Standard scenarios report: A U.S
,” in
Electricity Sector Outlook
(
National Renewable Energy Laboratory
,
Golden, CO
,
2019
).
2.
See U.S. Energy Information Administration Office of Energy Analysi
s
, https://www.eia.gov/outlooks/aeo/pdf/AEO2020%20Full%20Report.pdf for more information about “Annual Energy Outlook 2020 with projections to 2050,”
2020
.
3.
X.
Zheng
,
D.
Streimikiene
,
T.
Balezentis
,
A.
Mardani
,
F.
Cavallaro
, and
H.
Liao
, “
A review of greenhouse gas emission profiles, dynamics, and climate change mitigation efforts across the key climate change players
,”
J. Cleaner Prod.
234
,
1113
1133
(
2019
)
4.
H.
Hafeznia
,
A.
Aslani
,
S.
Anwar
, and
M.
Yousefjamali
, “
Analysis of the effectiveness of national renewable energy policies: A case of photovoltaic policies
,”
Renewable Sustainable Energy Rev.
79
,
669
680
(
2017
).
5.
M. I.
Hoffert
 et al., “
Advanced technology paths to global climate stability: Energy for a greenhouse planet
,”
Science
298
,
981
987
(
2002
).
6.
C.
Arndt
,
D.
Arent
,
F.
Hartley
,
B.
Merven
, and
A. H.
Mondal
, “
Faster Than You Think: Renewable Energy and Developing Countries
,”
Annu. Rev. Resour. Econ.
11
,
149
168
(
2019
).
7.
See Renewable Energy Policy Network for the 21st century, Renewables, https://www.ren21.net/wp-content/uploads/2019/05/REN21_GSR2016_FullReport_en_11.pdf for more information about “Global Status Report” (
2016
).
8.
See
UCLA Luskin Center for Innovation
, https://innovation.luskin.ucla.edu/wp-content/uploads/2019/11/100-Clean-Energy-Progress-Report-UCLA-2.pdf for more information about “
Progress Towards 100% Clean Energy in Cities and States Across the U.S.
” (
2019
).
9.
See Google, https://storage.googleapis.com/gweb-sustainability.appspot.com/pdf/24x7-carbon-free-energy-data-centers.pdf for more information about “
Moving Toward 24x7 Energy At Google Data Centers: Progress And Insights
” (
2018
).
10.
Z.
Bačelić Medić
,
B.
Ćosić
, and
N.
Duić
, “
Sustainability of remote communities: 100% renewable island of Hvar
,”
J. Renewable Sustainable Energy
5
,
041806
(
2013
).
11.
See Sierra Club, https://content.sierraclub.org/creative-archive/sites/content.sierraclub.org.creative-archive/files/pdfs/1352%20RF100%20report%2005_web-08-2016.pdf for more information about “Cities Are Ready for 100% Renewable Clean Energy, 10 Case Studies” (
2016
).
12.
M. Z.
Jacobson
,
M. A.
Delucchi
,
M. A.
Cameron
, and
B. A.
Frew
, “
Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes
,”
Proc. Natl. Acad. Sci. U. S. A.
112
(
49
),
15060
15065
(
2015
).
13.
S.
Houssainy
,
M.
Janbozorgi
, and
P.
Kavehpour
, “
Thermodynamic performance and cost optimization of a novel hybrid thermal-compressed air energy storage system design
,”
J. Energy Storage
18
,
206
217
(
2018
).
14.
P.
Denholm
and
R. M.
Margolis
, “
Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies
,”
Energy Policy
35
(
9
),
4424
4433
(
2007
).
15.
M.
Moser
,
H.-C.
Gils
, and
G.
Pivaro
, “
A sensitivity analysis on large-scale electrical energy storage requirements in Europe under consideration of innovative storage technologies
,”
J. Cleaner Prod.
269
,
122261
(
2020
).
16.
H.
Johlas
,
S.
Witherby
, and
J. R.
Doyle
, “
Storage requirements for high grid penetration of wind and solar power for the MISO region of North America: A case study
,”
Renewable Energy
146
,
1315
1324
(
2020
).
17.
W.
Braff
,
J.
Mueller
, and
J.
Trancik
, “
Value of storage technologies for wind and solar energy
,”
Nat. Clim Change
6
,
964
969
(
2016
).
18.
M.
Arbabzadeh
,
R.
Sioshansi
,
J. X.
Johnson
 et al., “
The role of energy storage in deep decarbonization of electricity production
,”
Nat. Commun.
10
,
3413
(
2019
).
19.
F.
Ueckerdt
,
R.
Pietzcker
,
Y.
Scholz
,
D.
Stetter
,
A.
Giannousakis
, and
G.
Luderer
, “
Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model
,”
Energy Econ.
64
,
665
684
(
2017
).
20.
A.
Mileva
,
J.
Johnston
,
J. H.
Nelson
, and
D. M.
Kammen
, “
Power system balancing for deep decarbonization of the electricity sector
,”
Appl. Energy
162
,
1001
1009
(
2016
).
21.
B. a
Frew
,
S.
Becker
,
M. J.
Dvorak
,
G. B.
Andresen
, and
M. Z.
Jacobson
, “
Flexibility mechanisms and pathways to a highly renewable US electricity future
,”
Energy
101
,
65
78
(
2016
).
22.
H.
Chen
,
T. N.
Cong
,
W.
Yang
,
C.
Tan
,
Y.
Li
, and
Y.
Ding
, “
Progress in electrical energy storage system: A critical review
,”
Prog. Nat. Sci
19
(
3
),
291
312
(
2009
).
23.
Q.
Yu
,
Q.
Wang
,
X.
Tan
,
G.
Fang
, and
J.
Meng
, “
A review of compressed-air energy storage
,”
J. Renewable Sustainable Energy
11
,
042702
(
2019
).
24.
Koohi-Fayegh
and
M. A.
Rosen
, “
A review of energy storage types, applications and recent developments
,”
J. Energy Storage
27
,
101047
(
2020
).
25.
J. H.
Jo
,
M. R.
Aldeman
, and
D. G.
Loomis
, “
Optimum penetration of regional utility-scale renewable energy systems
,”
Renewable Energy
118
,
328
334
(
2018
).
26.
Z.
Hungerford
,
A.
Bruce
, and
I.
MacGill
, “
The value of flexible load in power systems with high renewable energy penetration
,”
Energy
188
,
115960
(
2019
).
27.
P.
Denholm
,
M.
O'Connell
,
G.
Brinkman
, and
J.
Jorgeson
,
Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart
(
National Renewable Energy Laboratory
,
2015
).
28.
P.
Denholm
and
T.
Mai
, “
Timescales of energy storage needed for reducing renewable energy curtailment
,”
Renewable Energy
130
,
388
399
(
2019
).
29.
P.
Denholm
and
M.
Hand
, “
Grid flexibility and storage required to achieve very high penetration of variable renewable electricity
,”
Energy Policy
39
(
3
),
1817
1830
(
2011
).
30.
M. D.
Leonard
,
E. E.
Michaelides
, and
D. N.
Michaelides
, “
Energy storage needs for the substitution of fossil fuel power plants with renewables
,”
Renewable Energy
145
,
951
962
(
2020
).
31.
M. R.
Shaner
,
S. J.
Davis
,
N. S.
Lewis
, and
K.
Caldeira
, “
Geophysical constraints on the reliability of solar and wind power in the United States
,”
Energy Environ. Sci.
11
,
914
925
(
2018
).
32.
O. J.
Guerra
,
J.
Zhang
,
J.
Eichman
,
P.
Denholm
,
J.
Kurtz
, and
B.-M.
Hodge
, “
The value of seasonal energy storage technologies for the integration of wind and solar power
,”
Energy Environ. Sci.
13
,
1909
1922
(
2020
).
33.
O. J.
Guerra
, “
Beyond short-duration energy storage
,”
Nat. Energy
6
,
460
461
(
2021
).
34.
N. A.
Sepulveda
,
J. D.
Jenkins
,
A.
Edington
 et al., “
The design space for long-duration energy storage in decarbonized power systems
,”
Nat. Energy
6
,
506
516
(
2021
).
35.
F.
Cebulla
,
J.
Haas
,
J.
Eichman
,
W.
Nowak
, and
P.
Mancarella
, “
How much electrical energy storage do we need? A synthesis for the U.S., Europe, and Germany
,”
J. Cleaner Prod.
181
,
449
459
(
2018
).
36.
M.
Perez
,
R.
Perez
,
K. R.
Rábago
, and
M.
Putnam
, “
Overbuilding & curtailment: The cost-effective enablers of firm PV generation
,”
Sol. Energy
180
,
412
422
(
2019
).
37.
J.
Salom
,
A. J.
Marszal
,
J.
Widén
,
J.
Candanedo
, and
K. B.
Lindberg
, “
Analysis of load match and grid interaction indicators in net zero energy buildings with simulated and monitored data
,”
Applied Energy
136
,
119
131
(
2014
).
38.
M.
Deru
,
K.
Field
,
D.
Studer
,
K.
Benne
,
B.
Griffith
,
P.
Torcellini
,
B.
Liu
,
M.
Halverson
,
D.
Winiarsky
,
M.
Rosenberg
,
M.
Yazdanian
,
J.
Huang
, and
D.
Crawley
,
U.S. Department of Energy Commercial Reference Building Models of the National Building Stock
(
National Renewable Energy Laboratory
,
2011
).
39.
See
M. C.
Baechler
,
T. L.
Gilbride
,
P. C.
Cole
,
M. G.
Hefty
, and
K.
Ruiz
, https://www.energy.gov/sites/prod/files/2015/10/f27/ba_climate_region_guide_7.3.pdf for more information about “Building America Best Practices Series, High-Performance Home Technologies: Guide to Determining Climate Regions by County, Pacific Northwest National Laboratory” (
2015
).
40.
See https://www.eia.gov/consumption/commercial/ for more information about “
Commercial Buildings Energy Consumption Survey
,” Energy Information Administration (
2012
) (last accessed September 2020).
41.
See https://www.eia.gov/consumption/residential/ for more information about “
Residential Energy Consumption Survey
,” Energy Information Administration (
2015
) (last accessed September 2020).
42.
B. L.
Ball
,
N.
Long
,
K.
Fleming
,
C.
Balbach
, and
P.
Lopez
, (
2020
). “
An open source analysis framework for large-scale building energy modeling
,”
J. Build. Perform. Simul.
13
(
5
),
487
500.
43.
See
S.
Goel
,
M.
Rosenberg
, and
C.
Eley
, https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26917.pdf for more information about “
ANSI/ASHRAE/IES Standard 90.1-2016 Performance Rating Method Reference Manual, Pacific Northwest National Laboratory
” (
2017
).
44.
See
B.
Sparn
,
K.
Hudon
, and
D.
Christensen
, https://www.nrel.gov/docs/fy14osti/52635.pdf for more information about “
Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters, National Renewable Energy Laboratory
” (
2014
).
45.
See
D.
Ryberg
and
J.
Freeman
, https://www.nrel.gov/docs/fy17osti/68705.pdf for more information about “
Integration, Validation, and Application of a PV Snow Coverage Model in SAM
” (
2017
); accessed 24 July 2018.
46.
M.
Bolinger
and
J.
Seel
,
Empirical Trends in Project Technology, Cost, Performance and PPA Pricing in the United States
(
Lawrence Berkeley National Laboratory
,
2018
).
47.
See
R.
Wiser
,
M.
Bolinger
,
B.
Hoen
,
D.
Millstein
,
J.
Rand
, and
G.
Barbose
, https://emp.lbl.gov/wind-technologies-market-report/ for more information about “Wind Energy Technology Data Update” (
2020
).
48.
W.
Gorman
,
A.
Mills
, and
R.
Wiser
, “
Improving estimates of transmission capital costs for utility-scale wind and solar projects to inform renewable energy policy
,”
Energy Policy
135
,
110994
(
2019
).
49.
B.
Xu
,
A.
Oudalov
,
A.
Ulbig
,
G.
Andersson
, and
D. S.
Kirschen
, “
Modeling of lithium-ion battery degradation for cell life assessment
,”
IEEE Trans. Smart Grid.
99
,
15556
15564
(
2016
).
50.
J. J.
Brey
, “
Use of hydrogen as a seasonal energy storage system to manage renewable power deployment in Spain by 2030
,”
Int. J. Hydrogen Energy
46
,
17447
17457
(
2021
).
51.
S. K.
Shah
,
L.
Aye
, and
B.
Rismanchi
, “
Seasonal thermal energy storage system for cold climate zones: A review of recent developments
,”
Renewable Sustainable Energy Rev.
97
,
38
49
(
2018
).
52.
C.
Tarhan
and
M. A.
Çil
, “
A study on hydrogen, the clean energy of the future: Hydrogen storage methods
,”
J. Energy Storage
40
,
102676
(
2021
).
53.
See
F.
Ran
,
T.
Remo
, and
R.
Margolis
, U.S. Utility-Scale Photovoltaics-Plus-Energy Storage System Costs Benchmark, Report No. NREL/TP-6A20-71714 (
National Renewable Energy Laboratory
,
Golden, CO
,
2018
).
54.
C.
Schaber
,
P.
Mazza
, and
R.
Hammerschlag
, “
Utility-Scale Storage of Renewable Energy
,”
Electr. J.
17
(
6
),
21
29
(
2004
).
55.
See
Rocky Mountain Institute,
https://rmi.org/wp-content/uploads/2017/04/Pathways-to-Zero_Bldg-Case-for-Deep-Retrofits_Report_2012.pdf for more information about “
Guide to Building the Case for Deep Energy Retrofits”
(
2012
).
56.
See
International Energy Agency,
https://iea-annex61.org/files/results/Annex_61_SubTask_A_CaseStudies_2017-12-18.pdf for more information about “
Deep Energy Retrofit—Case Studies
(
2017
)
57.
See https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-20761.pdf for more information about “
Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance: Office Buildings. PNNL
(
2011
).
58.
See https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-20814.pdf for more information about “
Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance: Retail Buildings. PNNL
(
2011
).
59.
See https://www.nrel.gov/docs/fy13osti/54243.pdf for more information about “
Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance: Grocery Buildings. NREL
(
2013
).
60.
See https://www.nrel.gov/docs/fy14osti/60913.pdf for more information about “
Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance: k-12 Schools. NREL
” (
2013
).
61.
See https://www.nrel.gov/docs/fy13osti/57864.pdf for more information about “
Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance: Healthcare Facilities. NREL
” (
2013
).
62.
See
R.
Osser
,
K.
Neuhauser
, and
K.
Ueno
, https://www.nrel.gov/docs/fy12osti/54205.pdf for more information about “
Proven Performance of Seven Cold Climate Deep Retrofit Homes, NREL
” (
2012
).
63.
See https://www.nh.gov/osi/energy/programs/betterbuildings/documents/betterbuildings_case_studies.pdf for more information about “
Case Studies for Better Buildings NH
(
2013
).
64.
See
B.
Less
and
I.
Walker
https://www.osti.gov/servlets/purl/1129577 for more information about “
A Meta-Analysis of Single-Family Deep Energy Retrofit Performance in the U.S., NREL
” (
2014
).
65.
See.
A.
Benson
,
E.
Vargas
,
J.
Bunts
,
J.
Ong
,
K.
Hammond
,
L.
Reeves
,
M.
Chaplin
, and
P.
Duan
, https://www.ioes.ucla.edu/wp-content/uploads/retrofitting-commercial-real-estate.pdf for more information about “
Retrofitting Commercial Real Estate: Current Trends and Challenges in Increasing Building Energy Efficiency, UCLA
” (
2011
).
66.
See https://rmi.org/wp-content/uploads/2017/05/Deep-Energy-Retrofits-Using-ESPC-2015.pdf for more information about “
DEEP Energy Retrofits Using Energy Savings Performance Constracts: Success Stories, RMI
” (
2015
).
67.
See http://www.ercot.com/gridinfo/generation for more information about “
ERCOT, Fuel Mix Report
” (
2019
), accessed September 2020.
68.
See https://www.energy.ca.gov/data-reports/energy-almanac/california-electricity-data/2019-total-system-electric-generation/2018 for more information about “
California Energy Commissions, Total System Electric Generation
” (
2018
).
69.
See https://www.iso-ne.com/about/key-stats/resource-mix/ for more information about “
ISO New England, Resource Mix
” (
2019
); accessed September 2020.
70.
See https://www.xcelenergy.com/energy_portfolio/electricity/power_generation for more information about “
Xcel Energy, Power Supply
” (
2019
); accessed September 2020.
71.
See
K.
Mongrid
,
K.
Mongird
,
V.
Viswanathan
,
J.
Alam
,
C.
Vartanian
, and
V.
Sprenkle
, https://www.pnnl.gov/sites/default/files/media/file/Final%20-%20ESGC%20Cost%20Performance%20Report%2012-11-2020.pdf for more information about “
Grid. Energy Storage Technology Cost and Performance Assessment, U.S. Department of Energy
” (
2020
).
72.
See https://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf for more information about “
U.S. Energy Information Administration (EIA), Monthly Energy Review, August
” (
2021
).
73.
J.
Neubauer
and
E.
Wood
, “
Accounting for the variation of driver aggression in the simulation of conventional and advanced vehicles
,” Report No. Nrel/CP-5400-57503 (
National Renewable Energy Laboratory
,
Golden, CO
,
2013
).
74.
See
E.
Wood
,
S.
Raghavan
,
C.
Rames
,
J.
Eichman
, and
M.
Melaina
, https://www.nrel.gov/docs/fy17osti/67436.pdf for more information about “
Regional Charging Infrastructure for Plug-In Electric Vehicles: A Case Study of Massachusetts, National Renewable Energy Laboratory
” (
2017
).
75.
See https://avt.inl.gov/sites/default/files/pdf/fsev/2013LeafDCFCAtTempBOT.pdf (PDF) for more information about “
Idaho National Laboratory (INL), 2013 Nissan Leaf BEV – VINs 0545, 0646, 7885 & 9270: Advanced Vehicle Testing –DC Fast Charging at Temperature Test Results. Idaho Falls: INL
” (
2016
).
76.
P.
Denholm
,
T.
Mai
,
R. W.
Kenyon
,
B.
Kroposki
, and
M.
O'Malley
, Inertia and the Power Grid: A Guide Without the Spin, Report No. NREL/TP-6120-73856 (Golden, CO: National Renewable Energy Laboratory,
2020
).
You do not currently have access to this content.