A dewaxing catalyst was prepared through the dissolution of nickel oxide and tungsten powders in an aqueous medium, followed by impregnation of a Zeolite Socony Mobil-5 substrate and calcination at 500 °C. The synthesized catalyst was used in conjunction with a lab-designed, single-stage pyrolytic reactor running at a set point of 360 °C to break down a mixture of plastic grocery bags. The catalyst was found to be selective to the C9–C22 isomers typical of diesel No. 2. Gas chromatographic analysis indicated that the fraction of C24 and heavier components in the pyrolysis product was only 1.0%. Implications for process scale-up and economics are discussed.

1.
M.
Garside
, see https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ for “
Global Plastic Production
” (last accessed August 11,
2020
).
2.
National Oceanic and Atmospheric Administration
, see https://oceanservice.noaa.gov/hazards/marinedebris/plastics-in-the-ocean.html for “
A Guide to Plastic in the Ocean
” (last accessed August 19,
2020
).
3.
United State Environmental Protection Agency
, see https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data for “Plastics: Material-Specific Data, 2017” (last accessed August 19, 2020).
4.
I.
Vollmer
,
M. J. F.
Jenks
,
M. C. P.
Roelands
,
R. J.
White
,
T.
van Harmelen
,
P.
de Wild
,
G. P.
van Der Laan
,
F.
Meirer
,
J. T. F.
Keurentjes
, and
B. M.
Weckhuysen
, “
Beyond mechanical recycling: Giving new life to plastic waste
,”
Angew. Chem. Int. Ed.
59
,
15402
15423
(
2020
).
5.
C.
Jia
,
S.
Xie
,
W.
Zhang
,
N. N.
Intan
,
J.
Sampath
,
J.
Pfaendtner
, and
H.
Lin
, “
Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst
,”
Chem Catal.
1
,
437
455
(
2021
).
6.
H.
Choi
and
J. S.
Kwon
, “
Multiscale modeling and multiobjective control of wood fiber morphology in batch pulp digester
,”
AIChE J.
66
,
e16972
(
2020
).
7.
S. H.
Son
,
H.
Choi
, and
J. S.
Kwon
, “
Multiscale modeling and control of pulp digester under fiber-to-fiber heterogeneity
,”
Comput. Chem. Eng.
143
,
107117
(
2020
).
8.
R.
Verma
,
K. S.
Vinoda
,
M.
Papireddy
, and
A. N. S.
Gowda
, “
Toxic pollutants from plastic waste-a review
,”
Procedia Environ. Sci.
35
,
701
708
(
2016
).
9.
M.
Rehan
,
R.
Miandad
,
M. A.
Barakat
,
I. M. I.
Ismail
,
T.
Almeelbi
,
J.
Gardy
,
A.
Hassanpour
,
M. Z.
Khan
,
A.
Demirbas
, and
A. S.
Nizami
, “
Effect of zeolite catalysts on pyrolysis liquid oil
,”
Int. Biodeterior. Biodegrad.
119
,
162
175
(
2017
).
10.
M. S.
Qureshi
,
A.
Oasmaa
,
H.
Pihkola
,
I.
Deviatkin
,
A.
Tenhunen
,
J.
Mannila
,
H.
Minkkinen
,
M.
Pohjakallio
, and
J.
Laine-Ylijoki
, “
Pyrolysis of plastic waste: Opportunities and challenges
,”
J. Anal. Appl. Pyrolysis
148
,
104804
(
2020
).
11.
B. B.
Uzoejinwa
,
X.
He
,
S.
Wang
,
A. E.
Abomohra
,
Y.
Hu
, and
Q.
Wang
, “
Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide
,”
Energy Convers. Manag.
163
,
468
492
(
2018
).
12.
R.
Xiao
,
W.
Yang
,
X.
Cong
,
K.
Dong
,
J.
Xu
,
D.
Wang
, and
X.
Yang
, “
Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis
,”
Energy
201
,
117537
(
2020
).
13.
S.
Colantonio
,
L.
Cafiero
,
D.
De Angelis
,
N.
Ippolito
,
R.
Tuffi
, and
S. V.
Ciprioti
, “
Thermal and catalytic pyrolysis of a synthetic mixture representative of packaging plastics residue
,”
Front. Chem. Sci. Eng.
14
,
288
303
(
2020
).
14.
E. A.
Williams
and
P. T.
Williams
, “
Analysis of products derived from the fast pyrolysis of plastic waste
,”
J. Anal. Appl. Pyrolysis
40
,
347
363
(
1997
).
15.
R.
Miandad
,
M.
Rehan
,
M. A.
Barakat
,
A. S.
Aburiazaiza
,
H.
Khan
,
I. M. I.
Ismail
,
J.
Dhavamani
,
J.
Gardy
,
A.
Hassanpour
, and
A.
Nizami
, “
Catalytic pyrolysis of plastic waste: Moving toward pyrolysis based biorefineries
,”
Front. Energy Res.
7
,
27
(
2019
).
16.
S. D. A.
Sharuddin
,
F.
Abnisa
,
W. M. A. W.
Daud
, and
M. K.
Aroua
, “
A review on pyrolysis of plastic wastes
,”
Energy Convers. Manage.
115
,
308
326
(
2016
).
17.
M.
Artetxe
,
G.
Lopez
,
M.
Amutio
,
G.
Elordi
,
J.
Bilbao
, and
M.
Olazar
, “
Cracking of high density polyethylene pyrolysis waxes on HZSM-5 catalysts of different acidity
,”
Ind. Eng. Chem. Res.
52
,
10637
10645
(
2013
).
18.
R. J.
Bertolacini
,
P. D.
Hopkins
, and
R. L.
Menzl
, “
Catalyst for hydrotreating petroleum hydrocarbon oils and catalyst employed therein
,” U.S. patent 3,882,049 (May 6,
1975
).
19.
P. J.
Angevine
,
Y. F.
Chu
,
K. M.
Mitchell
,
S. M.
Oleck
,
S. S.
Shih
, and
R. C.
Wilson
, Jr.
, “
Simultaneous hydrotreating and dewaxing of petroleum feedstocks
,”
U.S. patent 4,696,732
(September 29,
1987
).
20.
D.
Yao
,
H.
Yang
,
H.
Chen
, and
P. T.
Williams
, “
Investigation of nickel-impregnated zeolite catalysts for hydrogen/syngas production from the catalytic reforming of waste polyethylene
,”
Appl. Catal., B
227
,
477
487
(
2018
).
21.
M. M.
Yung
,
A. K.
Starace
,
C.
Mukarakate
,
A. M.
Crow
,
M. A.
Leshnov
, and
K. A.
Magrini
, “
Biomass catalytic pyrolysis on Ni/ZSM-5: Effects of nickel pretreatment and loading
,”
Energy Fuels
30
,
5259
5268
(
2016
).
22.
J.
Sheng
,
X.
Yi
,
F.
Li
, and
W.
Fang
, “
Effects of tungsten on the catalytic activity of Ni–W catalysts for the hydrogenation of aromatic hydrocarbons
,”
Reac. Kinet., Mech. Catal.
99
,
371
379
(
2010
).
23.
G.
Dhillon
, “
Hydrotreating tungsten catalyst for production of green diesel from biodiesel
,” Master's thesis (
University of New Hampshire
,
Durham
,
2018
).
24.
Y.
Bi
,
H.
Nie
,
D.
Li
,
S.
Zeng
,
Q.
Yang
, and
M.
Li
, “
NiWO4 nanoparticles: A promising catalyst for hydrodesulfurization
,”
Chem. Commun.
46
,
7430
7432
(
2010
).
25.
Y.
Rezgui
and
M.
Guemini
, “
Effect of acidity and metal content on the activity and product selectivity for n-decane hydroisomerization and hydrocracking over nickel–tungsten supported on silica–alumina catalysts
,”
Appl. Catal., A
282
,
45
53
(
2005
).
26.
A. M.
Alsobaai
,
R.
Zakaria
, and
B. H.
Hameed
, “
Gas oil hydrocracking on NiW/USY catalyst: Effect of tungsten and nickel loading
,”
Chem. Eng. J.
132
,
77
83
(
2007
).
27.
Y.
Rezgui
,
M.
Guemini
,
A.
Tighezza
, and
A.
Bouchemma
, “
Isomerization of n-heptane over Ni-WOx/SiO2-Al2O3 catalysts. Effect of operating conditions, and nickel and tungsten loading
,”
Catal. Lett.
87
,
11
24
(
2003
).
28.
R. O.
Keeling
, “
The structure of NiWO4
,”
Acta Crystallogr.
10
,
209
213
(
1957
).
29.
X.
Li
, “
Synthesis, characterization and catalytic testing of metal tungstates as catalysts for activation of lower alkanes
,” Ph.D. thesis (
Technische Universität Berlin
,
2017
).
30.
T.
Xiao
,
H.
Wang
,
A. P. E.
York
,
V. C.
Williams
, and
M. L. H.
Green
, “
Preparation of nickel–tungsten bimetallic carbide catalysts
,”
J. Catal.
209
,
318
330
(
2002
).
31.
Chevron
, “
Diesel fuels technical review
,” (
2007
), https://www.onsitepoweradvisor.com/wp-content/uploads/2011/12/Chevron-DFTR.pdf.
32.
U.S. Environmental Protection Agency
,
Method 1663, Differentiation of Diesel and Crude Oil by GC/FID
(
U.S. Environmental Protection Agency
,
1992
).
33.
J. F.
Mastral
,
C.
Berrueco
,
M.
Gea
, and
J.
Ceamanos
, “
Catalytic degradation of high density polyethylene over nanocrystalline HZSM-5 zeolite
,”
Polym. Degrad. Stab.
91
,
3330
3338
(
2006
).
34.
H. S.
Joo
and
J. A.
Guin
, “
Hydrocracking of a plastics pyrolysis gas oil to naphtha
,”
Energy Fuels
11
,
586
592
(
1997
).
35.
D.
Munir
,
M. F.
Irfan
, and
M. R.
Usman
, “
Hydrocracking of virgin and waste plastics: A detailed review
,”
Renewable Sustainable Energy Rev.
90
,
490
515
(
2018
).
36.
United States Energy Information Administration, see
https://www.eia.gov/tools/faqs/faq.php?id=107 for “
What is the Efficiency of Different Types of Power Plants?
” (last accessed August 27, 2020)
.
You do not currently have access to this content.