This work examines the dynamic stall process and resulting wake features of cross-flow turbines under confined configurations using two computational modeling approaches, Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES). Cross-flow turbines harvest energy from wind or water currents via rotation about an axis perpendicular to the flow and are a complementary technology to the more common axial-flow turbine. During their 360° rotation cross-flow turbine blades experience a cyclical variation in the angle of attack and velocity relative to the oncoming flow, leading to flow separation and reattachment, otherwise known as dynamic stall. The dynamic stall process causes an instantaneous loss in torque generation and unsteady force fluctuations which pose a challenge to accurate predictions of both the performance and the resulting unsteady flow field. This research compares RANS simulations to higher fidelity LES of a straight-bladed two-blade cross-flow turbine at a moderate Reynolds number (Rec = 45,000) in a confined configuration. The RANS model is shown to be very sensitive to confinement at the simulated tip speed ratio as it over-predicts power generation due to suppression of flow separation, while the flow field from LES matches well with the experimental validation. Results are compared with an unconfined configuration for which the RANS model successfully predicts a power curve; however, it displays significant differences in the evolution of flow structures such as premature shedding of the dynamic stall vortex and a lack of vortex diffusion during convection in the wake.

1.
B.
Strom
,
S. L.
Brunton
, and
B.
Polagye
, “
Intracycle angular velocity control of cross-flow turbines
,”
Nat. Energy
2
,
1
9
(
2017
). 
2.
M.
Dave
,
B.
Strom
,
A.
Snortland
,
O.
Williams
,
B.
Polagye
, and
J. A.
Franck
, “
Simulations of intracycle angular velocity control for a crossflow turbine
,”
AIAA J.
59
,
812
824
(
2021
).
3.
A.
Schönborn
and
M.
Chantzidakis
, “
Development of a hydraulic control mechanism for cyclic pitch marine current turbines
,”
Renewable Energy
32
,
662
679
(
2007
).
4.
M.
Elkhoury
,
T.
Kiwata
, and
E.
Aoun
, “
Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch
,”
J. Wind Eng. Ind. Aerodyn.
139
,
111
123
(
2015
).
5.
R.
Gosselin
,
M.
Boudreau
, and
G.
Dumas
, “
Parametric study of H-Darrieus vertical-axis turbines using uRANS simulations
,” in
21st Annual Conference CFD Society of Canada
(
CFD Society of Canada
,
Sherbrooke, QC, Canada
,
2013
).
6.
B.
Paillard
,
J.
Astolfi
, and
F.
Hauville
, “
URANSE simulation of an active variable-pitch cross-flow Darrieus tidal turbine: Sinusoidal pitch function investigation
,”
Int. J. Mar. Energy
11
,
9
26
(
2015
).
7.
G.
Abdalrahman
,
W.
Melek
, and
F.-S.
Lien
, “
Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT)
,”
Renewable Energy
114
,
1353
1362
(
2017
).
8.
I.
Paraschivoiu
,
Wind Turbine Design: With Emphasis on Darrieus Concept
(
Presses inter Polytechnique
,
2002
).
9.
J. H.
Strickland
,
B. T.
Webster
, and
T.
Nguyen
, “
A vortex model of the Darrieus turbine: An analytical and experimental study
,”
J. Fluids Eng. Trans. ASME
101
,
500
505
(
1979
).
10.
R. E.
Wilson
and
S. N.
Walker
, “
Fixed-wake analysis of the Darrieus rotor
,”
Report No. SAND-81-7026
(
Sandia National Labs., Oregon State Univ
.,
1981
).
11.
J. N.
Sørensen
and
W. Z.
Shen
, “
Numerical modeling of wind turbine wakes
,”
J. Fluids Eng. Trans. ASME
124
,
393
399
(
2002
).
12.
W. Z.
Shen
,
J. H.
Zhang
, and
J. N.
Sørensen
, “
The actuator surface model: A new Navier–Stokes based model for rotor computations
,”
J. Sol. Energy Eng. Trans. ASME
131
,
0110021
(
2009
).
13.
R.
Dunne
and
B. J.
McKeon
, “
Dynamic stall on a pitching and surging airfoil
,”
Exp. Fluids
56
,
157
(
2015
).
14.
H.-C.
Tsai
and
T.
Colonius
, “
Coriolis effect on dynamic stall in a vertical axis wind turbine
,”
AIAA J.
54
,
216
226
(
2016
).
15.
E.
Amet
,
T.
Maître
,
C.
Pellone
, and
J. L.
Achard
, “
2D numerical simulations of blade-vortex interaction in a darrieus turbine
,”
J. Fluids Eng. Trans. ASME
131
,
1
15
(
2009
).
16.
M. R.
Castelli
,
G.
Ardizzon
,
L.
Battisti
,
E.
Benini
, and
G.
Pavesi
, “
Modeling strategy and numerical validation for a Darrieus vertical axis micro-wind turbine
,” in
Proceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition
(
ASME
,
2010
), pp.
1
10
.
17.
S.
Wang
,
D. B.
Ingham
,
L.
Ma
,
M.
Pourkashanian
, and
Z.
Tao
, “
Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils
,”
Comput. Fluids
39
,
1529
1541
(
2010
).
18.
L.
Daróczy
,
G.
Janiga
,
K.
Petrasch
,
M.
Webner
, and
D.
Thévenin
, “
Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors
,”
Energy
90
,
680
690
(
2015
).
19.
B.
Hand
,
G.
Kelly
, and
A.
Cashman
, “
Numerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbers
,”
Comput. Fluids
149
,
12
30
(
2017
).
20.
C. J.
Simão Ferreira
,
A.
van Zuijlen
,
H.
Bijl
,
G.
van Bussel
, and
G.
van Kuik
, “
Simulating dynamic stall in a two-dimensional vertical-axis wind turbine: Verification and validation with particle image velocimetry data
,”
Wind Energy
13
,
1
17
(
2010
).
21.
A. J.
Buchner
,
M. W.
Lohry
,
L.
Martinelli
,
J.
Soria
, and
A. J.
Smits
, “
Dynamic stall in vertical axis wind turbines: Comparing experiments and computations
,”
J. Wind Eng. Ind. Aerodyn.
146
,
163
171
(
2015
).
22.
J.
McNaughton
,
F.
Billard
, and
A.
Revell
, “
Turbulence modelling of low Reynolds number flow effects around a vertical axis turbine at a range of tip-speed ratios
,”
J. Fluids Struct.
47
,
124
138
(
2014
).
23.
R.
Howell
,
N.
Qin
,
J.
Edwards
, and
N.
Durrani
, “
Wind tunnel and numerical study of a small vertical axis wind turbine
,”
Renewable Energy
35
,
412
422
(
2010
).
24.
P.
Bachant
and
M.
Wosnik
, “
Modeling the near-wake of a vertical-axis cross-flow turbine with 2-D and 3-D RANS
,”
J. Renewable Sustainable Energy
8
,
053311
(
2016
).
25.
H.
Lam
and
H.
Peng
, “
Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations
,”
Renewable Energy
90
,
386
398
(
2016
).
26.
S.
Yagmur
and
F.
Kose
, “
Numerical evolution of unsteady wake characteristics of H-type Darrieus Hydrokinetic Turbine for a hydro farm arrangement
,”
Appl. Ocean Res.
110
,
102582
(
2021
).
27.
C.
Li
,
S.
Zhu
,
Y-l. L.
Xu
, and
Y.
Xiao
, “
2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow
,”
Renewable Energy
51
,
317
330
(
2013
).
28.
J.
He
,
X.
Jin
,
S.
Xie
,
L.
Cao
,
Y.
Wang
,
Y.
Lin
, and
N.
Wang
, “
CFD modeling of varying complexity for aerodynamic analysis of H-vertical axis wind turbines
,”
Renewable Energy
145
,
2658
2670
(
2020
).
29.
H.
Lei
,
D.
Zhou
,
Y.
Bao
,
Y.
Li
, and
Z.
Han
, “
Three-dimensional Improved Delayed Detached Eddy Simulation of a two-bladed vertical axis wind turbine
,”
Energy Convers. Manag.
133
,
235
248
(
2017
).
30.
O.
Mejia
,
J.
Quiñones
, and
S.
Laín
, “
RANS and hybrid RANS-LES simulations of an H-type Darrieus vertical axis water turbine
,”
Energies
11
,
2348
(
2018
).
31.
P.
Ouro
and
T.
Stoesser
, “
An immersed boundary-based large-eddy simulation approach to predict the performance of vertical axis tidal turbines
,”
Comput. Fluids
152
,
74
87
(
2017
).
32.
M.
Kinzel
,
Q.
Mulligan
, and
J. O.
Dabiri
, “
Energy exchange in an array of vertical-axis wind turbines
,”
J. Turbul.
13
,
1
13
(
2012
).
33.
V.
Rolin
and
F.
Porté-Agel
, “
Wind-tunnel study of the wake behind a vertical axis wind turbine in a boundary layer flow using stereoscopic particle image velocimetry
,”
J. Phys.: Conf. Ser.
625
,
012012
(
2015
).
34.
K. J.
Ryan
,
F.
Coletti
,
J. O.
Dabiri
, and
J. K.
Eaton
, “
Three-dimensional velocity measurements around and downstream of a rotating vertical axis wind turbine
,” in
Proceedings of ASME Turbo Expo
(
American Society of Mechanical Engineers
,
2014
), Vol.
3B
.
35.
G.
Tescione
,
D.
Ragni
,
C.
He
,
C. J.
Simão Ferreira
, and
G. J.
van Bussel
, “
Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry
,”
Renewable Energy
70
,
47
61
(
2014
).
36.
B.
Strom
,
B.
Polagye
, and
S. L.
Brunton
, “
Near-wake dynamics of a vertical-axis turbine
,” arXiv:2103.00407 (
2021
).
37.
L.
Battisti
,
L.
Zanne
,
S.
Dell'Anna
,
V.
Dossena
,
G.
Persico
, and
B.
Paradiso
, “
Aerodynamic measurements on a vertical axis wind turbine in a large scale wind tunnel
,”
J. Energy Resour. Technol. Trans. ASME
133
,
031201
(
2011
).
38.
H. Y.
Peng
and
H. F.
Lam
, “
Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations
,”
Energy
109
,
557
568
(
2016
).
39.
N. J.
Wei
,
I. D.
Brownstein
,
J. L.
Cardona
,
M. F.
Howland
, and
J. O.
Dabiri
, “
Near-wake structure of full-scale vertical-axis wind turbines
,”
J. Fluid Mech.
914
,
17
(
2021
).
40.
A.
Posa
, “
Secondary flows in the wake of a vertical axis wind turbine of solidity 0.5 working at a tip speed ratio of 2.2
,”
J. Wind Eng. Ind. Aerodyn.
213
,
104621
(
2021
).
41.
A.
Posa
,
C. M.
Parker
,
M. C.
Leftwich
, and
E.
Balaras
, “
Wake structure of a single vertical axis wind turbine
,”
Int. J. Heat Fluid Flow
61
,
75
84
(
2016
).
42.
F.
Scheurich
,
T. M.
Fletcher
, and
R. E.
Brown
, “
Simulating the aerodynamic performance and wake dynamics of a vertical-axis wind turbine
,”
Wind Energy
14
,
159
177
(
2011
).
43.
S.
Shamsoddin
and
F.
Porté-Agel
, “
Large eddy simulation of vertical axis wind turbine wakes
,”
Energies
7
,
890
912
(
2014
).
44.
M.
Abkar
and
J. O.
Dabiri
, “
Self-similarity and flow characteristics of vertical-axis wind turbine wakes: An LES study
,”
J. Turbul.
18
,
373
389
(
2017
).
45.
M.
Grondeau
,
S.
Guillou
,
P.
Mercier
, and
E.
Poizot
, “
Wake of a ducted vertical axis tidal turbine in turbulent flows, LBM actuator-line approach
,”
Energies
12
,
4273
(
2019
).
46.
V.
Mendoza
,
P.
Bachant
,
C.
Ferreira
, and
A.
Goude
, “
Near-wake flow simulation of a vertical axis turbine using an actuator line model
,”
Wind Energy
22
,
171
188
(
2019
).
47.
A.
Snortland
,
B.
Polagye
, and
O.
Williams
, “
Influence of near-blade hydrodynamics on cross-flow turbine performance
,” in
13th European Wave and Tidal Energy Conference
(
EWTEC
,
2019
), pp.
1
9
.
48.
T.
Kinsey
and
G.
Dumas
, “
Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines
,”
Renewable Energy
103
,
239
254
(
2017
).
49.
H.
Ross
and
B.
Polagye
, “
An experimental assessment of analytical blockage corrections for turbines
,”
Renewable Energy
152
,
1328
1341
(
2020
).
50.
W. W.
Kim
and
S.
Menon
, “
A new dynamic one-equation subgrid-scale model for large eddy simulations
,” in
33rd Aerospace Sciences Meeting and Exhibit
(
American Institute of Aeronautics and Astronautics Inc., AIAA
,
1995
).
51.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
631
(
1998
).
52.
A.
Yoshizawa
, “
Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling
,”
Phys. Fluids
29
,
2152
(
1986
).
53.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations
,”
Mon. Weather Rev.
91
,
99
164
(
1963
).
54.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow, Turbul. Combust.
62
,
183
200
(
1999
).
55.
E. R.
Van Driest
, “
On turbulent flow near a wall
,”
J. Aeronaut. Sci.
23
,
1007
1011
(
1956
).
56.
H.
Lu
,
C. J.
Rutland
, and
L. M.
Smith
, “
A priori tests of one-equation LES modeling of rotating turbulence
,”
J. Turbul.
8
,
1
27
(
2007
).
57.
S.
Kim
,
P. A.
Wilson
, and
Z. M.
Chen
, “
Effect of turbulence modelling on 3-D LES of transitional flow behind a circular cylinder
,”
Ocean Eng.
100
,
19
25
(
2015
).
58.
Z.
Feng
,
H.
Qi
,
X.
Huang
,
S.
Liu
, and
J.
Liu
, “
Comparisons of subgrid-scale models for OpenFOAM large-eddy simulation
,”
J. Phys.: Conf. Ser.
1802
,
042088
(
2021
).
59.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
60.
F.
Menter
and
T.
Esch
, “
Elements of industrial heat transfer predictions
,” in
16th Brazilian Congress of Mechanical Engineering
(
Brazilian Association of Engineering and Mechanical Sciences
,
2001
), pp.
117
127
.
61.
M. J.
Barnsley
and
J. H.
Wellicome
, “
Final report on the 2nd phase of development and testing of a horizontal axis wind turbine test rig for the investigation of stall regulation aerodynamics
,”
Report No. ETSU TR E.5A/CON5103/1746
(
1990
).
You do not currently have access to this content.