Wind gust characteristics at wind turbine relevant height are closely tied with wind turbine design and wind power generation, however, they have not been detailed and documented. In this study, high-resolution wind data recorded by 3D sonic anemometers at a tall meteorological tower were analyzed to determine 12 descriptors of wind gusts and to identify the parent distributions that best fit these parameters. The main statistics were estimated using wind data from the 160 m height. It is found that the log-logistic distribution is most appropriate for a 10-min mean wind speed, gust magnitude, gust factor, and turbulence intensity; the gamma distribution appears to best fit peak factor, rise magnitude, lapse magnitude, lapse time, and gust length scale, while gust amplitude, rise time, and gust asymmetric factor are typically log-normally distributed. Gust factors tend to decrease with mean wind speed but increase as a function of turbulence intensity. The results also indicate that these wind gust descriptive parameters are height-dependent in which the 10-min mean wind speed, gust magnitude, gust length scale, rise time, and lapse time usually possess larger values at higher heights, whereas the remaining parameters exhibit negative correlation with height.

1.
X.
Mi
and
S.
Zhao
, “
Wind speed prediction based on singular spectrum analysis and neural network structural learning
,”
Energy Convers. Manage.
216
,
112956
(
2020
).
2.
Z. R.
Shu
,
Q. S.
Li
, and
P. W.
Chan
, “
Statistical analysis of wind characteristics and wind energy potential in Hong Kong
,”
Energy Convers. Manage.
101
,
644
657
(
2015
).
3.
Z. R.
Shu
,
Q. S.
Li
,
Y. C.
He
, and
P. W.
Chan
, “
Observations of offshore wind characteristics by Doppler-LiDAR for wind energy applications
,”
Appl. Energy
169
,
150
163
(
2016
).
4.
Z.
Shu
,
Q.
Li
,
Y.
He
, and
P. W.
Chan
, “
Investigation of marine wind veer characteristics using wind lidar measurements
,”
Atmosphere
11
(
11
),
1178
(
2020
).
5.
REN21 Secretariat
,
Renewables 2020 Global Status Report
(
REN21 Secretariat
,
Paris, France
,
2020
).
6.
GWEC
,
Global Wind Report-Annual Market Update
(
Global Wind Energy Council
2019
).
7.
B. W.
Yan
,
P. W.
Chan
,
Q. S.
Li
,
Y. C.
He
, and
Z. R.
Shu
, “
Characterising the fractal dimension of wind speed time series under different terrain conditions
,”
J. Wind Eng. Ind. Aerodyn.
201
,
104165
(
2020
).
8.
Z. R.
Shu
,
P. W.
Chan
,
Q. S.
Li
,
Y. C.
He
, and
B. W.
Yan
, “
Quantitative assessment of offshore wind speed variability using fractal analysis
,”
Wind Struct.
31
(
4
),
363
371
(
2020
).
9.
Y. C.
He
,
J. Y.
He
,
W. C.
Chen
,
P. W.
Chan
,
J. Y.
Fu
, and
Q. S.
Li
, “
Insights from Super Typhoon Mangkhut (1822) for wind engineering practices
,”
J. Wind Eng. Ind. Aerodyn.
203
,
104238
(
2020
).
10.
F.
Boettcher
,
C. H.
Renner
,
H. P.
Waldl
, and
J.
Peinke
, “
On the statistics of wind gusts
,”
Boundary-Layer Meteorol.
108
(
1
),
163
173
(
2003
).
11.
Z. R.
Shu
,
P. W.
Chan
,
Q. S.
Li
, and
Y. C.
He
, “
Dynamic characterization of wind speed under extreme conditions by recurrence-based techniques: Comparative study
,”
J. Aerosp. Eng.
34
(
2
),
04020114
(
2020
).
12.
Z. R.
Shu
,
P. W.
Chan
,
Q. S.
Li
,
Y. C.
He
,
B. W.
Yan
,
L.
Li
 et al., “
Characterization of vertical wind velocity variability based on fractal dimension analysis
,”
J. Wind Eng. Ind. Aerodyn.
213
,
104608
(
2021
).
13.
B.
Yan
,
P. W.
Chan
,
Q.
Li
,
Y.
He
, and
Z.
Shu
, “
Dynamic analysis of meteorological time series in Hong Kong: A nonlinear perspective
,”
Int. J. Climatol.
41
,
4920
(
2021
).
14.
Z.
Shu
,
P. W.
Chan
,
Q.
Li
,
Y.
He
, and
B.
Yan
, “
Characterization of daily rainfall variability in Hong Kong: A nonlinear dynamic perspective
,”
Int. J. Climatol.
41
,
E2913
E2926
(
2021
).
15.
Z. R.
Shu
,
P. W.
Chan
,
Q. S.
Li
,
Y. C.
He
, and
B. W.
Yan
, “
Investigation of chaotic features of surface wind speeds using recurrence analysis
,”
J. Wind Eng. Ind. Aerodyn.
210
,
104550
(
2021
).
16.
Z. R.
Shu
,
Q. S.
Li
, and
P. W.
Chan
, “
Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function
,”
Appl. Energy
156
,
362
373
(
2015
).
17.
F.
Li
,
G.
Ren
, and
J.
Lee
, “
Multi-step wind speed prediction based on turbulence intensity and hybrid deep neural networks
,”
Energy Convers. Manage.
186
,
306
322
(
2019
).
18.
Z.
Zhang
,
H.
Qin
,
Y.
Liu
,
L.
Yao
,
X.
Yu
,
J.
Lu
 et al., “
Wind speed forecasting based on quantile regression minimal gated memory network and kernel density estimation
,”
Energy Convers. Manage.
196
,
1395
1409
(
2019
).
19.
G.
Memarzadeh
and
F.
Keynia
, “
A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets
,”
Energy Convers. Manage.
213
,
112824
(
2020
).
20.
L.
Xiang
,
J.
Li
,
A.
Hu
, and
Y.
Zhang
, “
Deterministic and probabilistic multi-step forecasting for short-term wind speed based on secondary decomposition and a deep learning method
,”
Energy Convers. Manage.
220
,
113098
(
2020
).
21.
Y.
Zhang
,
G.
Pan
,
Y.
Zhao
,
Q.
Li
, and
F.
Wang
, “
Short-term wind speed interval prediction based on artificial intelligence methods and error probability distribution
,”
Energy Convers. Manage.
224
,
113346
(
2020
).
22.
P.
Friederichs
,
M.
Göber
,
S.
Bentzien
,
A.
Lenz
, and
R.
Krampitz
, “
A probabilistic analysis of wind gusts using extreme value statistics
,”
Meteorol. Z.
18
(
6
),
615
629
(
2009
).
23.
W.
Hu
,
F.
Letson
,
R. J.
Barthelmie
, and
S. C.
Pryor
, “
Wind gust characterization at wind turbine relevant heights in moderately complex terrain
,”
J. Appl. Meteorol. Climatol.
57
(
7
),
1459
1476
(
2018
).
24.
A.
Gutiérrez
,
C.
Porrini
, and
R. G.
Fovell
, “
Combination of wind gust models in convective events
,”
J. Wind Eng. Ind. Aerodyn.
199
,
104118
(
2020
).
25.
I.
Suomi
,
S. E.
Gryning
,
R.
Floors
,
T.
Vihma
, and
C.
Fortelius
, “
On the vertical structure of wind gusts
,”
Q. J. R. Meteorol. Soc.
141
(
690
),
1658
1670
(
2015
).
26.
WMO
, “
Measurement of surface wind
,” in
Guide to Meteorological Instruments and Methods of Observation WMO-No. 8, 2008 Edition Updated in 2010
(
World Meteorological Organization
,
2012
).
27.
T.
Burton
,
D.
Sharpe
,
N.
Jenkins
, and
E.
Bossanyi
,
Wind Energy Handbook
(
Wiley
,
New York
,
2001
), Vol.
2
.
28.
F.
Letson
,
R. J.
Barthelmie
,
W.
Hu
,
L. D.
Brown
, and
S. C.
Pryor
, “
Wind gust quantification using seismic measurements
,”
Nat. Hazards
99
(
1
),
355
377
(
2019
).
29.
I.
Suomi
,
S. E.
Gryning
,
E. J.
O'Connor
, and
T.
Vihma
, “
Methodology for obtaining wind gusts using Doppler lidar
,”
Q. J. R. Meteorol. Soc.
143
(
706
),
2061
2072
(
2017
).
30.
G.
Fang
,
L.
Zhao
,
S.
Cao
,
Y.
Ge
, and
K.
Li
, “
Gust characteristics of near-ground typhoon winds
,”
J. Wind Eng. Ind. Aerodyn.
188
,
323
337
(
2019
).
31.
R.
Hewston
and
S. R.
Dorling
, “
An analysis of observed daily maximum wind gusts in the UK
,”
J. Wind Eng. Ind. Aerodyn.
99
(
8
),
845
856
(
2011
).
32.
H.
Ágústsson
and
H.
Ólafsson
, “
Forecasting wind gusts in complex terrain
,”
Meteorol. Atmos. Phys.
103
(
1–4
),
173
185
(
2009
).
33.
I.
Suomi
and
T.
Vihma
, “
Wind gust measurement techniques—From traditional anemometry to new possibilities
,”
Sensors
18
(
4
),
1300
(
2018
).
34.
I.
Suomi
,
T.
Vihma
,
S. E.
Gryning
, and
C.
Fortelius
, “
Wind‐gust parametrizations at heights relevant for wind energy: A study based on mast observations
,”
Q. J. R. Meteorol. Soc.
139
(
674
),
1298
1310
(
2013
).
35.
International Electrotechnical Commission
,
Wind Turbines-Part 1: Design requirements, IEC 614001 Ed. 3
(
International Electrotechnical Commission
,
2006
).
36.
J. F.
Manwell
,
J. G.
McGowan
, and
A. L.
Rogers
,
Wind Energy Explained: Theory, Design and Application
(
John Wiley & Sons
,
2010
).
37.
G. C.
Larsen
and
K. S.
Hansen
,
Database on Wind Characteristics–Analyses of Wind Turbine Design Loads
(
Risø National Laboratory
,
Roskilde, Denmark
,
2004
).
38.
W.
Bierbooms
and
P. W.
Cheng
, “
Stochastic gust model for design calculations of wind turbines
,”
J. Wind Eng. Ind. Aerodyn.
90
(
11
),
1237
1251
(
2002
).
39.
A. C. M.
Beljaars
, “
The influence of sampling and filtering on measured wind gusts
,”
J. Atmos. Oceanic Technol.
4
(
4
),
613
626
(
1987
).
40.
M. E.
Greenway
, “
An analytical approach to wind velocity gust factors
,”
J. Wind Eng. Ind. Aerodyn.
5
(
1–2
),
61
91
(
1979
).
41.
J. Y.
He
,
Y. C.
He
,
Q. S.
Li
,
P. W.
Chan
,
L.
Zhang
,
H. L.
Yang
, and
L.
Li
, “
Observational study of wind characteristics, wind speed and turbulence profiles during Super Typhoon Mangkhut
,”
J. Wind Eng. Ind. Aerodyn.
206
,
104362
(
2020
).
42.
J. Y.
He
,
P. W.
Chan
,
Q.
Li
,
L.
Li
,
C.
Lu
,
L.
Zhang
, and
H.
Yang
, “
Characteristics of wind structure and nowcasting of gust associated with subtropical squall lines over Hong Kong and Shenzhen, China
,”
Atmosphere
11
(
3
),
270
(
2020
).
43.
Y. P.
Luo
,
J. Y.
Fu
,
Q. S.
Li
,
P. W.
Chan
, and
Y. C.
He
, “
Observation of Typhoon Hato based on the 356-m high meteorological gradient tower at Shenzhen
,”
J. Wind Eng. Ind. Aerodyn.
207
,
104408
(
2020
).
44.
L.
Li
,
C.
Lu
,
P. W.
Chan
,
X.
Zhang
,
H. L.
Yang
,
Z. J.
Lan
 et al., “
Tower observed vertical distribution of PM2.5, O3 and NOx in the Pearl River Delta
,”
Atmos. Environ.
220
,
117083
(
2020
).
45.
Eddy Covariance: A Practical Guide to Measurement and Data Analysis
, edited by
M.
Aubinet
,
T.
Vesala
, and
D.
Papale
(
Springer Science & Business Media
,
2012
).
46.
F. J.
Masters
,
P. J.
Vickery
,
P.
Bacon
, and
E. N.
Rappaport
, “
Toward objective, standardized intensity estimates from surface wind speed observations
,”
Bull. Am. Meteorol. Soc.
91
(
12
),
1665
1682
(
2010
).
47.
J.
Hojstrup
, “
A statistical data screening procedure
,”
Meas. Sci. Technol.
4
(
2
),
153
(
1993
).
48.
T.
Foken
and
C. J.
Napo
,
Micrometeorology
(
Springer
,
Berlin
,
2008
), Vol.
2
.
49.
F.
Letson
,
R. J.
Barthelmie
,
W.
Hu
, and
S. C.
Pryor
, “
Characterizing wind gusts in complex terrain
,”
Atmos. Chem. Phys.
19
(
6
),
3797
(
2019
).
50.
N.
Dimitrov
, “
Comparative analysis of methods for modelling the short‐term probability distribution of extreme wind turbine loads
,”
Wind Energy
19
(
4
),
717
737
(
2016
).
51.
P. W.
Cheng
and
W. A. A. M.
Bierbooms
, “
Distribution of extreme gust loads of wind turbines
,”
J. Wind Eng. Ind. Aerodyn.
89
(
3–4
),
309
324
(
2001
).
52.
R. V.
Hogg
,
J.
McKean
, and
A. T.
Craig
,
Introduction to Mathematical Statistics
(
Pearson Education
,
2005
).
53.
O.
Brasseur
, “
Development and application of a physical approach to estimating wind gusts
,”
Mon. Weather Rev.
129
(
1
),
5
25
(
2001
).
54.
R.
Bos
, “
Extreme gusts and their role in wind turbine design
,” Ph.D. thesis (
Delft University of Technology
,
The Netherlands
,
2017
).
55.
L. M.
Bardal
and
L. R.
Sætran
, “
Wind gust factors in a coastal wind climate
,”
Energy Procedia
94
,
417
424
(
2016
).
56.
A. S.
Monin
and
A. M.
Obukhov
, “
Basic laws of turbulent mixing in the surface layer of the atmosphere
,”
Contrib. Geophys. Inst. Acad. Sci. USSR
151
(
163
),
e187
(
1954
).
57.
J. C.
Kaimal
and
J. E.
Gaynor
, “
Another look at sonic thermometry
,”
Boundary-Layer Meteorol.
56
(
4
),
401
410
(
1991
).
58.
R. O.
Weber
, “
Remarks on the definition and estimation of friction velocity
,”
Boundary-Layer Meteorol.
93
(
2
),
197
209
(
1999
).
59.
R. J.
Barthelmie
, “
The effects of atmospheric stability on coastal wind climates
,”
Meteorol. Appl.
6
(
1
),
39
47
(
1999
).
You do not currently have access to this content.