In recent years, wind turbine yaw misalignment that tends to degrade the turbine power production and impact the blade fatigue loads raises more attention along with the rapid development of large-scale wind turbines. The state-of-the-art correction methods require additional instruments such as laser imaging detection and ranging to provide the ground truths and are not suitable for long-term operation and large-scale implementation due to the high costs. In the present study, we propose a framework that enables the effective and efficient detection and correction of static and dynamic yaw errors by using only turbine supervisory control and data acquisition data, suitable for a low-cost regular inspection for large-scale wind farms in onshore, coastal, and offshore sites. This framework includes a short-period data collection of the turbine operating under multiple static yaw errors, a data mining correction for the static yaw error, and ultra-short-term dynamic yaw error forecasts with machine learning algorithms. Three regression algorithms, i.e., linear, support vector machine, and random forest, and a hybrid model based on the average prediction of the three, have been tested for dynamic yaw error prediction and compared using the field measurement data from a 2.5 MW turbine. For the data collected in the present study, the hybrid method shows the best performance and can reduce the total yaw error by up to 85% (on average of 71%) compared to the cases without static and dynamic yaw error corrections. In addition, we have tested the transferability of the proposed method in the application of detecting other static and dynamic yaw errors.

1.
Global Wind Energy Council
, “
GWEC| global wind report 2021
” (
2020
).
2.
F.
Bu
,
W.
Huang
,
Y.
Hu
,
Y.
Xu
,
K.
Shi
, and
Q.
Wang
, “
Study and implementation of a control algorithm for wind turbine yaw control system
,” in
2009 World Non-Grid-Connected Wind Power Energy Conference (WNWEC)
(
IEEE
,
2009
), Vol.
2
, pp.
144
148
.
3.
M. G.
Kim
and
P. H.
Dalhoff
, “
Yaw systems for wind turbines: Overview of concepts, current challenges and design methods
,”
J. Phys.
524
,
012086
(
2014
).
4.
R.
Bakhshi
and
P.
Sandborn
, “
The effect of yaw error on the reliability of wind turbine blades
,”
Energy Sustainability
50220
,
V001T14A001
(
2016
).
5.
J. M.
Pinar Pérez
,
F. P.
García Márquez
,
A.
Tobias
, and
M.
Papaelias
, “
Wind turbine reliability analysis
,”
Renewable Sustainable Energy Rev.
23
,
463
472
(
2013
).
6.
D.
Astolfi
,
F.
Castellani
, and
L.
Terzi
, “
An operation data-based method for the diagnosis of zero-point shift of wind turbines yaw angle
,”
J. Sol. Energy Eng.
142
,
024501
(
2020
).
7.
Y.
Pei
,
Z.
Qian
,
B.
Jing
,
D.
Kang
, and
L.
Zhang
, “
Data-driven method for wind turbine yaw angle sensor zero-point shifting fault detection
,”
Energies
11
,
553
(
2018
).
8.
Y.
Bao
,
Q.
Yang
,
L.
Fu
,
Q.
Chen
,
C.
Cheng
, and
Y.
Sun
, “
Identification of yaw error inherent misalignment for wind turbine based on SCADA data: A data mining approach
,” in
2019 12th Asian Control Conference (ASCC)
(
IEEE
,
2019
), pp.
1095
1100
.
9.
D.
Choi
,
W.
Shin
,
K.
Ko
, and
W.
Rhee
, “
Static and dynamic yaw misalignments of wind turbines and machine learning based correction methods using lidar data
,”
IEEE Trans. Sustainable Energy
10
,
971
982
(
2019
).
10.
P. A.
Fleming
,
A. K.
Scholbrock
,
A.
Jehu
,
S.
Davoust
,
E.
Osler
,
A. D.
Wright
 et al, “
Field-test results using a nacelle-mounted lidar for improving wind turbine power capture by reducing yaw misalignment
,”
J. Phys.
524
,
012002
(
2014
).
11.
R.
Bakhshi
and
P.
Sandborn
, “
Maximizing the returns of lidar systems in wind farms for yaw error correction applications
,”
Wind Energy
23
,
1408
1421
(
2020
).
12.
L.
Zhang
and
Q.
Yang
, “
A method for yaw error alignment of wind turbine based on lidar
,”
IEEE Access
8
,
25052
25059
(
2020
).
13.
T. F.
Pedersen
,
G.
Demurtas
, and
F.
Zahle
, “
Calibration of a spinner anemometer for yaw misalignment measurements
,”
Wind Energy
18
,
1933
1952
(
2015
).
14.
D.
Astolfi
,
F.
Castellani
,
L.
Scappaticci
, and
L.
Terzi
, “
Diagnosis of wind turbine misalignment through SCADA data
,”
Diagnostyka
18
,
17
24
(
2017
).
15.
D.
Astolfi
,
F.
Castellani
,
M.
Becchetti
,
A.
Lombardi
, and
L.
Terzi
, “
Wind turbine systematic yaw error: Operation data analysis techniques for detecting IT and assessing its performance impact
,”
Energies
13
,
2351
(
2020
).
16.
U.
Turkyilmaz
,
J.
Hansson
,
O.
Undehem
, and
V.
Kjeller
, “
Use of remote sensing for performance optimization of wind farms
” (
2016
), see https://energiforskmedia.blob.core.windows.net/media/21304/use-of-remote-sensing-for-performance-optimization-of-wind-farms-energiforskrapport-2016-298.pdf. 
17.
J.
Xue
and
L.
Wang
, “
Online data-driven approach of yaw error estimation and correction of horizontal axis wind turbine
,”
J. Eng.
2019
,
4937
4940
.
18.
J.
Liew
,
A.
Urbán
, and
S. J.
Andersen
, “
Analytical model for the power-yaw sensitivity of wind turbines operating in full wake
,”
Wind Energy Sci.
5
,
427
(
2019
).
19.
A.
Khosravi
,
R. N. N.
Koury
,
L.
Machado
, and
J. J. G.
Pabon
, “
Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system
,”
Sustainable Energy Technol. Assess.
25
,
146
160
(
2018
).
20.
E.
Erdem
and
J.
Shi
, “
ARMA based approaches for forecasting the tuple of wind speed and direction
,”
Appl. Energy
88
,
1405
1414
(
2011
).
21.
N.
Sheibat-Othman
,
S.
Othman
,
R.
Tayari
,
A.
Sakly
,
P. F.
Odgaard
, and
L. F. S.
Larsen
, “
Estimation of the wind turbine yaw error by support vector machines
,”
IFAC-PapersOnLine
48
,
339
344
(
2015
).
22.
T.
Ouyang
,
A.
Kusiak
, and
Y.
He
, “
Predictive model of yaw error in a wind turbine
,”
Energy
123
,
119
130
(
2017
).
23.
M. F.
Howland
,
C. M.
González
,
J. J. P.
Martínez
,
J. B.
Quesada
,
F. P.
Larrañaga
,
N. K.
Yadav
 et al, “
Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment
,”
J. Renewable Sustainable Energy
12
,
063307
(
2020
).
24.
V.
Sohoni
,
S. C.
Gupta
, and
R. K.
Nema
, “
A critical review on wind turbine power curve modelling techniques and their applications in wind based energy systems
,”
J. Energy
2016
,
8519785
.
25.
M.
Lydia
,
S. S.
Kumar
,
A. I.
Selvakumar
, and
G. E.
Prem Kumar
, “
A comprehensive review on wind turbine power curve modeling techniques
,”
Renewable Sustainable Energy Rev.
30
,
452
460
(
2014
).
26.
U.
Graham
and
C.
Ian
,
Understanding Statistics
(
Oxford University Press
,
1996
).
27.
Z.
Lin
and
X.
Liu
, “
Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network
,”
Energy
201
,
117693
(
2020
).
28.
A.
Kisvari
,
Z.
Lin
, and
X.
Liu
, “
Wind power forecasting: A data-driven method along with gated recurrent neural network
,”
Renewable Energy
163
,
1895
1909
(
2021
).
29.
L.
Donadio
,
J.
Fang
, and
F.
Porté-Agel
, “
Numerical weather prediction and artificial neural network coupling for wind energy forecast
,”
Energies
14
,
338
(
2021
).
30.
S.
Hanifi
,
X.
Liu
,
Z.
Lin
, and
S.
Lotfian
, “
A critical review of wind power forecasting methods-past, present and future
,”
Energies
13
,
3764
(
2020
).
31.
F.
Barbieri
,
S.
Rajakaruna
, and
A.
Ghosh
, “
Very short-term photovoltaic power forecasting with cloud modeling: A review
,”
Renewable Sustainable Energy Rev.
75
,
242
263
(
2017
).
32.
H.
Demolli
,
A. S.
Dokuz
,
A.
Ecemis
, and
M.
Gokcek
, “
Wind power forecasting based on daily wind speed data using machine learning algorithms
,”
Energy Convers. Manag.
198
,
111823
(
2019
).
33.
J.
Nocedal
and
S. J.
Wright
,
Numerical Optimization
, 2nd ed. (
Springer
,
New York
,
2006
), Vol.
83
.
34.
C.
Cortes
and
V.
Vapnik
, “
Support-vector networks
,”
Mach. Learn.
20
,
273
297
(
1995
).
35.
Y. L.
Pavlov
,
Random Forests
(
De Gruyter
,
2019
), pp.
1
122
.
36.
A.
Lahouar
and
J.
Ben Hadj Slama
, “
Hour-ahead wind power forecast based on random forests
,”
Renewable Energy
109
,
529
541
(
2017
).
37.
S.
Liu
,
Y.
Yang
, and
J.
Forrest
,
Grey Data Analysis
(
Springer
,
Singapore
,
2017
).
38.
Y.
Liu
,
J.
Yan
,
S.
Han
,
I.
David
,
D.
Tian
, and
L.
Gao
, “
An optimized short-term wind power interval prediction method considering NWP accuracy
,”
Chin. Sci. Bull.
59
,
1167
1175
(
2014
).
39.
Y.
Zhao
and
L.
Jia
, “
A short-term hybrid wind power prediction model based on singular spectrum analysis and temporal convolutional networks
,”
J. Renewable Sustainable Energy
12
,
056101
(
2020
).
40.
Y.
Liu
,
X.
Gao
,
J.
Yan
,
S.
Han
, and
D. G.
Infield
, “
Clustering methods of wind turbines and its application in short-term wind power forecasts
,”
J. Renewable Sustainable Energy
6
,
053119
(
2014
).
41.
R.
Damiani
,
S.
Dana
,
J.
Annoni
,
P.
Fleming
,
J.
Roadman
,
J.
van Dam
 et al, “
Assessment of wind turbine component loads under yaw-offset conditions
,”
Wind Energy Sci.
3
,
173
189
(
2018
).
42.
E.
Simley
,
P.
Fleming
, and
J.
King
, “
Design and analysis of a wake steering controller with wind direction variability
,”
Wind Energy Sci.
5
,
451
468
(
2020
).
43.
L.
Gao
and
J.
Hong
, “
Wind turbine performance in natural icing environments: A field characterization
,”
Cold Reg. Sci. Technol.
181
,
103193
(
2021
).
44.
L.
Gao
,
S.
Yang
,
A.
Abraham
, and
J.
Hong
, “
Effects of inflow turbulence on structural deformation of wind turbine blades
,”
J. Wind Eng. Ind. Aerodyn.
199
,
104137
(
2020
).
45.
L.
Gao
,
B.
Li
, and
J.
Hong
, “
Effect of wind veer on wind turbine power generation
,”
Phys. Fluids
33
,
015101
(
2021
).
46.
D. R.
Song
,
Q. A.
Li
,
Z.
Cai
,
L.
Li
,
J.
Yang
,
M.
Su
 et al, “
Model predictive control using multi-step prediction model for electrical yaw system of horizontal-axis wind turbines
,”
IEEE Trans. Sustainable Energy
10
,
2084
2093
(
2019
).
47.
R.
Kavitha
and
P. C.
Mukesh Kumar
, “
A comparison between MLP and SVR models in prediction of thermal properties of nano fluids
,”
J. Appl. Fluid Mech.
11
,
7
14
(
2018
).
48.
X.
Li
,
J.
Sha
, and
Z. L.
Wang
, “
A comparative study of multiple linear regression, artificial neural network and support vector machine for the prediction of dissolved oxygen
,”
Hydrol. Res.
48
,
1214
1225
(
2017
).
49.
R.
Pandit
,
D.
Infield
, and
T.
Dodwell
, “
Operational variables for improving industrial wind turbine yaw misalignment early fault detection capabilities using data-driven techniques
,”
IEEE Trans. Instrum. Meas.
70
,
1
8
(
2021
).
50.
N.
Ali
and
R. B.
Cal
, “
Data-driven modeling of the wake behind a wind turbine array
,”
J. Renewable Sustainable Energy
12
,
04393
(
2020
).
51.
N.
Ali
,
M.
Calaf
, and
R. B.
Cal
, “
Clustering sparse sensor placement identification and deep learning based forecasting for wind turbine wakes
,”
J. Renewable Sustainable Energy
13
,
023307
(
2021
).

Supplementary Material

You do not currently have access to this content.