In the context of green ships, solar photovoltaic (PV) as an important clean energy technology has attracted the attention of many scholars in the shipping industry. To ensure the stable electrical output of PV modules is the premise for the effective use of solar photovoltaic technology on ships. Different from the terrestrial environment, the disturbance of marine environmental factors to the electrical output characteristics of PV modules should be considered. It is clear that salt spray and seawater are the most important marine environmental factors that affect the electrical output characteristics of PV modules, and the corresponding mechanism is analyzed. A marine environment simulation experimental platform for PV modules is built, and experiment verification is carried out. The results show that salt spray and seawater have different perturbations on the electrical output characteristics of PV modules, and the effects will change with the change of salt spray and seawater. The combined influence of salt spray on the electrical output of the PV module is a maximum power reduction of about 6%, and the combined influence of seawater on the electrical output of the PV module is a maximum power increase of about 20%. The experiment results can provide the research basis for further research on environmental disturbance suppression methods for PV modules.

1.
International Maritime Organization (IMO),
The International Maritime Organization's Initial Greenhouse Gas Strategy
(
IMO's Marine Environment Protection Committee (MEPC)
,
London
,
2018
).
2.
See
Center for Climate and Energy Solutions (C2ES),
https://www.c2es.org/content/international-emissions for “
Global Emissions [EB/OL]
” (last accessed June 05,
2020
).
3.
J. A.
Felicio
,
R.
Rodrigues
, and
V.
Caldeirinha
, “
Green shipping effect on sustainable economy and environmental performance
,”
Sustainability
13
(
8
),
4256
(
2021
).
4.
Lloyd's Register,
Global Marine Technology Trends 2030
(
QinetiQ and University of Southampton
,
2015
).
5.
Japan Ship Technology Research Association,
Roadmap to Zero Emission from International Shipping
(
Supported by Shipping Zero Emissions Project
,
Japan
,
2020
).
6.
S.
Chu
and
A.
Mujumdar
, “
Opportunities and challenges for a sustainable energy future
,”
Nature
488
(
7411
),
294
303
(
2012
).
7.
P. C.
Pan
,
Y. W.
Sun
,
C. Q.
Yuan
 et al., “
Research progress on ship power systems integrated with new energy sources: A review
,”
Renewable Sustainable Energy Rev.
144
,
111048
(
2021
).
8.
C.
Nuchturee
,
T.
Li
, and
H. P.
Xia
, “
Energy efficiency of integrated electric propulsion for ships—A review
,”
Renewable Sustainable Energy Rev.
134
,
110145
(
2020
).
9.
Y. Q.
Zhu
,
S.
Zhou
,
Y. M.
Feng
 et al., “
Influences of solar energy on the energy efficiency design index for new building ships
,”
Int. J. Hydrogen Energy
42
(
30
),
19389
19394
(
2019
).
10.
C.
Karatug
and
Y.
Durmusoglu
, “
Design of a solar photovoltaic system for a Ro-Ro ship and estimation of performance analysis: A case study
,”
Sol. Energy
207
,
1259
1268
(
2020
).
11.
J. L.
Teeter
and
S. A.
Cleary
, “
Decentralized oceans: Sail-solar shipping for sustainable development in SIDS
,”
Natural Resour. Forum
38
(
3
),
182
192
(
2014
).
12.
T.
Kokusho
,
E.
Emoto
, and
T.
Kato
, “
Sailing solar-cell raft project and weather and marine conditions in low-latitude Pacific Ocean
,”
J. Energy Eng.
139
(
1
),
2
7
(
2013
).
13.
L.
Chen
,
J. D.
Wang
, and
C. X.
Xu
, “
The application of solar photovoltaic power generation system in ships
,”
J. Coastal Res.
94
,
525
529
(
2019
).
14.
X. Q.
Liu
,
S.
Yue
,
L. Y.
Lu
 et al., “
Investigation of the dust scaling behaviour on solar photovoltaic panels
,”
J. Cleaner Prod.
295
,
126391
(
2021
).
15.
H. F.
Varga
and
M. R.
Wiesner
, “
Effect of dust composition on the reversibility of photovoltaic panel soiling
,”
Environ. Sci. Technol.
55
(
3
),
1984
1991
(
2021
).
16.
X. Q.
Liu
,
S.
Yue
,
J. L.
Li
 et al., “
Study of a dust deposition mechanism dominated by electrostatic force on a solar photovoltaic module
,”
Sci. Total Environ.
754
,
142241
(
2021
).
17.
Z. A.
Darwish
,
K.
Sopian
, and
A.
Fudholi
, “
Reduced output of photovoltaic modules due to different types of dust particles
,”
J. Cleaner Prod.
280
,
124317
(
2021
).
18.
J.
Xu
and
J.
Bu
, “
Preparation and properties of solar composite materials for marine environment
,”
Appl. Ecol. Environ. Res.
17
(
6
),
14217
14229
(
2019
).
19.
C. Q.
Yuan
,
C. L.
Dong
,
L. L.
Zhao
 et al., “
Marine environmental damage effects of solar cell panel
,” in
International Conference on Prognostics and Health Management
, Macau (
2010
).
20.
M. D.
Ageev
,
D. R.
Blidberg
,
J.
Jalbert
 et al., “
Results of the evaluation and testing of the solar powered AUV and its subsystems
,” in
Symposium on Autonomous Underwater Vehicle Technology
, San Antonio, TX, USA (
2002
).
21.
H. D.
Liu
,
Q.
Zhang
,
X. X.
Qi
 et al., “
Estimation of PV output power in moving and rocking hybrid energy marine ships
,”
Appl. Energy
204
,
362
372
(
2017
).
22.
N.
Espinosa
,
M.
Hosel
,
M.
Jorgensen
 et al., “
Large scale deployment of polymer solar cells on land, on sea and in the air
,”
Energy Environ. Sci.
7
(
3
),
855
866
(
2014
).
23.
M.
Hossain
,
S.
Mekhilef
, and
L.
Olatomiwa
, “
Performance evaluation of a stand-alone PV-wind-diesel-battery hybrid system feasible for a large resort center in South China Sea, Malaysia
,”
Sustainable Cities Soc.
28
,
358
366
(
2016
).
24.
F. L.
Qu
,
W. G.
Li
,
W. K.
Dong
 et al., “
Durability deterioration of concrete under marine environment from material to structure: A critical review
,”
J. Build. Eng.
35
,
102074
(
2021
).
25.
H. Y.
Liu
,
Y. X.
Teng
,
J.
Guo
 et al., “
Corrosion resistance and corrosion behavior of high-copper-bearing steel in marine environments
,”
Mater. Corros.
72
(
5
),
816
828
(
2020
).
26.
R. M.
Katona
,
R. G.
Kelly
,
C. R.
Bryan
 et al., “
Use of in situ Raman spectroelectrochemical technique to explore atmospheric corrosion in marine-relevant environments
,”
Electrochem. Commun.
118
,
106768
(
2020
).
27.
S. R.
Wenham
,
M. A.
Green
, and
M. E.
Watt
,
Applied Photovoltaics
(
Earthscan
,
UK/USA
,
2007
).
28.
R.
Kadri
,
H.
Andrei
, and
J. P.
Gaubert
, et al., “
Modeling of the photovoltaic cell circuit parameters for optimum connection model and real-time emulator with partial shadow conditions
,”
Energy
42
(
1
),
57
67
(
2012
).
29.
S.
Mekhilef
,
R.
Saidur
, and
M.
Kamalisarvestani
, “
Effect of dust, humidity and air velocity on efficiency of photovoltaic cells
,”
Renewable Sustainable Energy Rev.
16
(
5
),
2920
2925
(
2012
).
30.
F. G.
Al-Amri
and
T. I. M.
Abdelmagid
, “
Analytical model for the prediction of solar cell temperature for a high-concentration photovoltaic system
,”
Case Stud. Therm. Eng.
25
,
100890
(
2021
).
31.
D.
Kumar
and
A. K.
Tangirala
, “
Adaptive model predictive control of module temperature in photovoltaic systems
,”
Ind. Eng. Chem. Res.
60
(
11
),
4351
4365
(
2012
).
32.
N.
Anani
and
H.
Ibrahim
, “
Adjusting the single-diode model parameters of a photovoltaic module with irradiance and temperature
,”
Energies
13
(
12
),
3226
(
2020
).
33.
C. F.
Abe
,
J. B.
Dias
,
G.
Notton
 et al., “
Experimental application of methods to compute solar irradiance and cell temperature of photovoltaic modules
,”
Sensors
20
(
9
),
2490
(
2020
).
34.
C. F.
Abe
,
J. B.
Dias
,
G.
Notton
 et al., “
Computing solar irradiance and average temperature of photovoltaic modules from the maximum power point coordinates
,”
IEEE J. Photovoltaics
10
(
2
),
655
663
(
2020
).
35.
H. E.
Achouby
,
M.
Zaimi
,
A.
Ibral
 et al., “
New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar module
,”
Energy Convers. Manage.
177
,
258
271
(
2018
).
36.
Y.
Imai
,
J.
Chantana
,
Y.
Kawano
 et al., “
Description of performance degradation of photovoltaic modules using spectral mismatch correction factor under different irradiance levels
,”
Renewable Energy
141
,
444
450
(
2019
).
37.
M. T.
DeLand
,
G.
Kopp
, and
D. B.
Considine
, “
Overview of the NASA Solar Irradiance Science Team (SIST) program special section
,”
Earth Space Sci.
6
(
12
),
2229
2231
(
2019
).
38.
M.
Trolliet
,
J. P.
Walawender
,
B.
Bourles
 et al., “
Downwelling surface solar irradiance in the tropical Atlantic Ocean: A comparison of re-analyses and satellite-derived data sets to PIRATA measurements
,”
Ocean Sci.
14
(
5
),
1021
1056
(
2018
).
You do not currently have access to this content.