With more locations for wind generation, the grid's dependability is degraded. This paper presents a state-of-art combined wind power prediction model, including data preprocessing, improved secondary decomposition, and deep learning. A density-based spatial clustering of applications with noise was used primarily to identify and address irrational data and then correct them using k-nearest neighbor. Later, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) was used to decompose the original wind power time series into several intrinsic mode functions (IMFs), and the variational mode decomposition (VMD) was adopted for further decomposition, due to its high irregularity and instability, of the first two components. Finally, a long short-term memory (LSTM) was employed to predict each component. The proposed model was then applied to two wind farms in Turkey and France. The experimental findings are as follows: (1) The data preprocessing scheme proposed in this paper can improve the predicted results. After data preprocessing, mean absolute error (MAE) and root mean squared error (RMSE) have declined by 10.73% and 10.20% on average, respectively. (2) The improved predictions were greater than the common secondary decomposition. The MAE and RMSE of improved CEEMDAN-VMD-LSTM were down by 14.77% and 15.12% on average, compared with CEEMDAN-VMD-LSTM, respectively.

1.
M.-R.
Chen
,
G.-Q.
Zeng
,
K.-D.
Lu
, and
J.
Weng
, “
A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM
,”
IEEE Internet Things J.
6
,
6997
7010
(
2019
).
2.
J.
Ma
,
M.
Yang
,
X.
Han
, and
Z.
Li
, “
Ultra-short-term wind generation forecast based on multivariate empirical dynamic modeling
,”
IEEE Trans. Ind. Appl.
54
,
1029
1038
(
2017
).
3.
H.
Tao
,
S. Q.
Salih
,
M. K.
Saggi
,
E.
Dodangeh
,
C.
Voyant
,
N.
Al-Ansari
,
Z. M.
Yaseen
, and
S.
Shahid
, “
A newly developed integrative bio-inspired artificial intelligence model for wind speed prediction
,”
IEEE Access
8
,
83347
83358
(
2020
).
4.
H.
Chen
,
Y.
Birkelund
,
S. N.
Anfinsen
, and
F.
Yuan
, “
Comparative study of data-driven short-term wind power forecasting approaches for the Norwegian Arctic region
,”
J. Renewable Sustainable Energy
13
,
023314
(
2021
).
5.
W.
Teng
,
H.
Cheng
,
X.
Ding
,
Y.
Liu
,
Z.
Ma
, and
H.
Mu
, “
DNN-based approach for fault detection in a direct drive wind turbine
,”
IET Renewable Power Gener.
12
,
1164
1171
(
2018
).
6.
Y.
Wang
,
Q.
Hu
,
D.
Srinivasan
, and
Z.
Wang
, “
Wind power curve modeling and wind power forecasting with inconsistent data
,”
IEEE Trans. Sustainable Energy
10
,
16
25
(
2018
).
7.
Y.
Hu
,
Y.
Qiao
,
J.
Liu
, and
H.
Zhu
, “
Adaptive confidence boundary modeling of wind turbine power curve using SCADA data and its application
,”
IEEE Trans. Sustainable Energy
10
,
1330
1341
(
2018
).
8.
J.
An
,
Z.
Bie
,
X.
Chen
,
B.
Hua
, and
S.
Liu
, “
A generalized data preprocessing method for wind power prediction
,” in
2013 IEEE Power & Energy Society General Meeting
(
IEEE
,
2013
), pp.
1
5
.
9.
Z.
Tang
,
G.
Zhao
,
G.
Wang
, and
T.
Ouyang
, “
Hybrid ensemble framework for short-term wind speed forecasting
,”
IEEE Access
8
,
45271
45291
(
2020
).
10.
Y.-K.
Wu
,
Y.-C.
Wu
,
J.-S.
Hong
,
L. H.
Phan
, and
D. P.
Quoc
, “
Probabilistic forecast of wind power generation with data processing and numerical weather predictions
,” in
2020 IEEE/IAS 56th Industrial and Commercial Power Systems Technical Conference (I&CPS)
(
IEEE
,
2020
), pp.
1
11
.
11.
B.
Zhou
,
X.
Ma
,
Y.
Luo
, and
D.
Yang
, “
Wind power prediction based on LSTM networks and nonparametric kernel density estimation
,”
IEEE Access
7
,
165279
165292
(
2019
).
12.
A.
Zameer
,
J.
Arshad
,
A.
Khan
, and
M. A. Z.
Raja
, “
Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks
,”
Energy Convers. Manage.
134
,
361
372
(
2017
).
13.
K.
Wang
,
X.
Qi
,
H.
Liu
, and
J.
Song
, “
Deep belief network based k-means cluster approach for short-term wind power forecasting
,”
Energy
165
,
840
852
(
2018
).
14.
A.
Lahouar
and
J. B. H.
Slama
, “
Hour-ahead wind power forecast based on random forests
,”
Renewable Energy
109
,
529
541
(
2017
).
15.
Y.
Zhang
,
Y.
Zhao
,
C.
Kong
, and
B.
Chen
, “
A new prediction method based on VMD-PRBF-ARMA-E model considering wind speed characteristic
,”
Energy Convers. Manage.
203
,
112254
(
2020
).
16.
S.
Singh
and
A.
Mohapatra
 et al, “
Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting
,”
Renewable Energy
136
,
758
768
(
2019
).
17.
W.
Xie
,
P.
Zhang
,
R.
Chen
, and
Z.
Zhou
, “
A nonparametric Bayesian framework for short-term wind power probabilistic forecast
,”
IEEE Trans. Power Syst.
34
,
371
379
(
2018
).
18.
A.
Carpinone
,
M.
Giorgio
,
R.
Langella
, and
A.
Testa
, “
Markov chain modeling for very-short-term wind power forecasting
,”
Electr. Power Syst. Res.
122
,
152
158
(
2015
).
19.
H.
Yin
,
Z.
Ou
,
S.
Huang
, and
A.
Meng
, “
A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition
,”
Energy
189
,
116316
(
2019
).
20.
H.
Yin
,
Z.
Dong
,
Y.
Chen
,
J.
Ge
,
L. L.
Lai
,
A.
Vaccaro
, and
A.
Meng
, “
An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization
,”
Energy Convers. Manage.
150
,
108
121
(
2017
).
21.
R.
Sharma
,
T.
Shikhola
, and
J. K.
Kohli
, “
Modified fuzzy Q-learning based wind speed prediction
,”
J. Wind Eng. Ind. Aerodyn.
206
,
104361
(
2020
).
22.
R.
Calif
,
F. G.
Schmitt
, and
Y.
Huang
, “
Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis
,”
Physica A
392
,
4106
4120
(
2013
).
23.
H.
Ouyang
,
X.
Wei
, and
Q.
Wu
, “
Discovery and prediction of stock index pattern via three-stage architecture of TICC, TPA-LSTM and multivariate LSTM-FCNS
,”
IEEE Access
8
,
123683
123700
(
2020
).
24.
Y. K.
Chin
,
N.
Bolong
,
A.
Kiring
,
S. S.
Yang
, and
K. T. K.
Teo
, “
Q-learning based traffic optimization in management of signal timing plan
,”
Int. J. Simul., Syst., Sci. Technol.
12
,
29
35
(
2011
).
25.
C. S.
Chin
,
M.
Tan
,
P.
Neelakantan
,
B. L.
Chua
, and
K. T. K.
Teo
, “
Optimization of partially shaded PV array using fuzzy MPPT
,” in
2011 IEEE Colloquium on Humanities, Science and Engineering
(
IEEE
,
2011
), pp.
481
486
.
26.
Y.
Jiang
,
G.
Huang
,
X.
Peng
,
Y.
Li
, and
Q.
Yang
, “
A novel wind speed prediction method: Hybrid of correlation-aided DWT, LSSVM and GARCH
,”
J. Wind Eng. Ind. Aerodyn.
174
,
28
38
(
2018
).
27.
N.
Ali
and
R. B.
Cal
, “
Data-driven modeling of the wake behind a wind turbine array
,”
J. Renewable Sustainable Energy
12
,
033304
(
2020
).
28.
W.
Qiao
,
W.
Tian
,
Y.
Tian
,
Q.
Yang
,
Y.
Wang
, and
J.
Zhang
, “
The forecasting of PM2. 5 using a hybrid model based on wavelet transform and an improved deep learning algorithm
,”
IEEE Access
7
,
142814
142825
(
2019
).
29.
Y.
Liu
,
J.
Shi
,
Y.
Yang
, and
W.-J.
Lee
, “
Short-term wind-power prediction based on wavelet transform–support vector machine and statistic-characteristics analysis
,”
IEEE Trans. Ind. Appl.
48
,
1136
1141
(
2012
).
30.
C.
Yu
,
Y.
Li
,
H.
Xiang
, and
M.
Zhang
, “
Data mining-assisted short-term wind speed forecasting by wavelet packet decomposition and Elman neural network
,”
J. Wind Eng. Ind. Aerodyn.
175
,
136
143
(
2018
).
31.
J.
Duan
,
P.
Wang
,
W.
Ma
,
X.
Tian
,
S.
Fang
,
Y.
Cheng
,
Y.
Chang
, and
H.
Liu
, “
Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy long short-term memory neural network
,”
Energy
214
,
118980
(
2021
).
32.
L.
Han
,
H.
Jing
,
R.
Zhang
, and
Z.
Gao
, “
Wind power forecast based on improved long short term memory network
,”
Energy
189
,
116300
(
2019
).
33.
T.
Guo
,
L.
Zhang
,
Z.
Liu
, and
J.
Wang
, “
A combined strategy for wind speed forecasting using data preprocessing and weight coefficients optimization calculation
,”
IEEE Access
8
,
33039
33059
(
2020
).
34.
C.
Wang
,
H.
Zhang
, and
P.
Ma
, “
Wind power forecasting based on singular spectrum analysis and a new hybrid Laguerre neural network
,”
Appl. Energy
259
,
114139
(
2020
).
35.
N.
Safari
,
C.
Chung
, and
G.
Price
, “
Novel multi-step short-term wind power prediction framework based on chaotic time series analysis and singular spectrum analysis
,”
IEEE Trans. Power Syst.
33
,
590
601
(
2017
).
36.
Y.
Zhao
and
L.
Jia
, “
A short-term hybrid wind power prediction model based on singular spectrum analysis and temporal convolutional networks
,”
J. Renewable Sustainable Energy
12
,
056101
(
2020
).
37.
Y.
Mao
,
M.
Jia
, and
X.
Yan
, “
A new bearing weak fault diagnosis method based on improved singular spectrum decomposition and frequency-weighted energy slice bispectrum
,”
Measurement
166
,
108235
(
2020
).
38.
J.
Naik
,
P.
Satapathy
, and
P.
Dash
, “
Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression
,”
Appl. Soft Comput.
70
,
1167
1188
(
2018
).
39.
O.
Abedinia
,
M.
Lotfi
,
M.
Bagheri
,
B.
Sobhani
,
M.
Shafie-Khah
, and
J. P.
Catalão
, “
Improved EMD-based complex prediction model for wind power forecasting
,”
IEEE Trans. Sustainable Energy
11
,
2790
2802
(
2020
).
40.
Y.
Ren
,
P.
Suganthan
, and
N.
Srikanth
, “
A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods
,”
IEEE Trans. Sustainable Energy
6
,
236
244
(
2014
).
41.
M. E.
Torres
,
M. A.
Colominas
,
G.
Schlotthauer
, and
P.
Flandrin
, “
A complete ensemble empirical mode decomposition with adaptive noise
,” in
2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
IEEE
,
2011
), pp.
4144
4147
.
42.
P.
Du
,
J.
Wang
,
W.
Yang
, and
T.
Niu
, “
A novel hybrid model for short-term wind power forecasting
,”
Appl. Soft Comput.
80
,
93
106
(
2019
).
43.
K.
Dragomiretskiy
and
D.
Zosso
, “
Variational mode decomposition
,”
IEEE Trans. Signal Process.
62
,
531
544
(
2013
).
44.
R.
Wang
,
C.
Li
,
W.
Fu
, and
G.
Tang
, “
Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction
,”
IEEE Trans. Neural Networks Learn. Syst.
31
,
3814
3827
(
2019
).
45.
W.
Fu
,
K.
Zhang
,
K.
Wang
,
B.
Wen
,
P.
Fang
, and
F.
Zou
, “
A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM
,”
Renewable Energy
164
,
211
229
(
2021
).
46.
L.
Xiang
,
J.
Li
,
A.
Hu
, and
Y.
Zhang
, “
Deterministic and probabilistic multi-step forecasting for short-term wind speed based on secondary decomposition and a deep learning method
,”
Energy Convers. Manage.
220
,
113098
(
2020
).
47.
M.
Ester
,
H.-P.
Kriegel
,
J.
Sander
,
X.
Xu
 et al, “
A density-based algorithm for discovering clusters in large spatial databases with noise
,” in
KDD-96
(
AAAI Press
,
1996
), pp.
226
231
48.
L.
Zheng
,
W.
Hu
, and
Y.
Min
, “
Raw wind data preprocessing: A data-mining approach
,”
IEEE Trans. Sustainable Energy
6
,
11
19
(
2014
).
49.
T.
Cover
and
P.
Hart
, “
Nearest neighbor pattern classification
,”
IEEE Trans. Inf. Theory
13
,
21
27
(
1967
).
50.
N. E.
Huang
,
Z.
Shen
,
S. R.
Long
,
M. C.
Wu
,
H. H.
Shih
,
Q.
Zheng
,
N.-C.
Yen
,
C. C.
Tung
, and
H. H.
Liu
, “
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
,”
Proc. R. Soc. London, Ser. A
454
,
903
995
(
1998
).
51.
N.
Sun
,
J.
Zhou
,
L.
Chen
,
B.
Jia
,
M.
Tayyab
, and
T.
Peng
, “
An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine
,”
Energy
165
,
939
957
(
2018
).
52.
T.
Liang
,
G.
Xie
,
S.
Fan
, and
Z.
Meng
, “
A combined model based on CEEMDAN, permutation entropy, gated recurrent unit network, and an improved bat algorithm for wind speed forecasting
,”
IEEE Access
8
,
165612
165630
(
2020
).
53.
Y.-X.
Wu
,
Q.-B.
Wu
, and
J.-Q.
Zhu
, “
Data-driven wind speed forecasting using deep feature extraction and LSTM
,”
IET Renewable Power Gener.
13
,
2062
2069
(
2019
).
54.
N.
Ali
,
M.
Calaf
, and
R. B.
Cal
, “
Clustering sparse sensor placement identification and deep learning based forecasting for wind turbine wakes
,”
J. Renewable Sustainable Energy
13
,
023307
(
2021
).
55.
B.
Erisen
(
2019
). “
2018 SCADA data of a wind turbine in Turkey
,” Kaggle, V.3.0, Wind Turbine SCADA, Dataset. https://www.kaggle.com/berkerisen/wind-turbine-scada-dataset
56.
E.
Renewables
(
2019
). “
La Haute Borne Data (2013–2016)
,” Open Licence, V.2.0 (Etalab), Dataset. https://opendata-renewables.engie.com/explore/index
You do not currently have access to this content.