This article discusses the utilization of an active slat concept to reduce turbulence induced fluctuating loads on an airfoil. The performance of the active slat is tested in the wind tunnel under different complex inflows created by an active grid resulting in variations in the angle of attack. Different open loop control strategies are developed to mitigate the load fluctuations on the airfoil. The aerodynamics around the airfoil is changed by actively moving the trailing edge of the slat. It is observed that the active slat concept is able to alleviate load fluctuations on the airfoil for inflow angle fluctuations of different scales.

1.
M.
Wächter
,
H.
Heißelmann
,
M.
Hölling
,
A.
Morales
,
P.
Milan
,
T.
Mücke
,
J.
Peinke
,
N.
Reinke
, and
P.
Rinn
, “
The turbulent nature of the atmospheric boundary layer and its impact on the wind energy conversion process
,”
J. Turbul.
13
,
N26
(
2012
).
2.
M.
Hölling
,
J.
Peinke
, and
S.
Ivanell
,
Wind Energy—Impact Turbulence
(
Springer Science & Business
,
2014
), Vol.
2
.
3.
S.
Lee
,
M. J.
Churchfield
,
P. J.
Moriarty
,
J.
Jonkman
, and
J.
Michalakes
, “
A numerical study of atmospheric and wake turbulence impacts on wind turbine fatigue loadings
,”
J. Sol. Energy Eng.
135
,
031001
(
2013
).
4.
A.
Lavely
,
G.
Vijayakumar
,
M.
Kinzel
,
J.
Brasseur
, and
E.
Paterson
, “
Space-time loadings on wind turbine blades driven by atmospheric boundary layer turbulence
,” in
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
2011
).
5.
B.
Ernst
and
J. R.
Seume
, “
Investigation of site-specific wind field parameters and their effect on loads of offshore wind turbines
,”
Energies
5
,
3835
3855
(
2012
).
6.
A.
Rezaeiha
,
R.
Pereira
, and
M.
Kotsonis
, “
Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large horizontal axis wind turbine
,”
Renewable Energy
114
,
904
916
(
2017
).
7.
F.
Spinato
,
P. J.
Tavner
,
G. J. W.
Van Bussel
, and
E.
Koutoulakos
, “
Reliability of wind turbine subassemblies
,”
IET Renewable Power Gener.
3
,
387
401
(
2009
).
8.
B. L.
Jones
,
W. H.
Lio
, and
J. A.
Rossiter
, “
Overcoming fundamental limitations of wind turbine individual blade pitch control with inflow sensors
,”
Wind Energy
21
,
922
936
(
2018
).
9.
C. L.
Bottasso
,
A.
Croce
,
C. E. D.
Riboldi
, and
M.
Salvetti
, “
Cyclic pitch control for the reduction of ultimate loads on wind turbines
,”
J. Phys.: Conf. Ser.
524
,
012063
(
2014
).
10.
I.
Aramendia
,
U.
Fernandez-Gamiz
,
J. A.
Ramos-Hernanz
,
J.
Sancho
,
J. M.
Lopez-Guede
, and
E.
Zulueta
, “
Flow control devices for wind turbines
,”
Energy Harvesting Energy Effic.
37
,
629
655
(
2017
).
11.
T. K.
Barlas
and
G. A. M.
van Kuik
, “
Review of state of the art in smart rotor control research for wind turbines
,”
Prog. Aerosp. Sci.
46
,
1
27
(
2010
).
12.
C. P.
Van Dam
,
D. E.
Berg
, and
S. J.
Johnson
, “
Active load control techniques for wind turbines
,”
Report No. SAND2008-4809
(Sandia National Laboratories,
2008
).
13.
S. J.
Johnson
,
J. P.
Baker
,
C. P.
Van Dam
, and
D.
Berg
, “
An overview of active load control techniques for wind turbines with an emphasis on microtabs
,”
Wind Energy
13
,
239
253
(
2010
).
14.
P. B.
Andersen
,
L.
Henriksen
,
M.
Gaunaa
,
C.
Bak
, and
T.
Buhl
, “
Deformable trailing edge flaps for modern megawatt wind turbine controllers using strain gauge sensors
,”
Wind Energy
13
,
193
206
(
2010
).
15.
W.
Zhang
,
Y.
Wang
,
R.
Liu
,
H.
Liu
, and
X.
Zhang
, “
Unsteady aerodynamic modeling and control of the wind turbine with trailing edge flap
,”
J. Renewable Sustainable Energy
10
,
063304
(
2018
).
16.
X.
Bofeng
,
F.
Junheng
,
L.
Qing
,
X.
Chang
,
Z.
Zhenzhou
, and
Y.
Yue
, “
Aerodynamic performance analysis of a trailing-edge flap for wind turbines
,”
J. Phys.: Conf. Ser.
1037
,
022020
(
2018
).
17.
I.
Herráez
,
B.
Akay
,
G. J. W.
van Bussel
,
J.
Peinke
, and
B.
Stoevesandt
, “
Detailed analysis of the blade root flow of a horizontal axis wind turbine
,”
Wind Energy Sci.
1
,
89
100
(
2016
).
18.
L.
Gao
,
H.
Zhang
,
Y.
Liu
, and
S.
Han
, “
Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines
,”
Renewable Energy
76
,
303
311
(
2015
).
19.
N.
Troldborg
,
F.
Zahle
, and
N. N.
Sørensen
, “
Simulations of wind turbine rotor with vortex generators
,”
J. Phys.: Conf. Ser.
753
,
022057
(
2016
).
20.
G.
Pechlivanoglou
,
C. N.
Nayeri
, and
C. O.
Paschereit
, “
Fixed leading edge auxiliary wing as a performance increasing device for HAWT blades
,” DEWEK, Bremen, Germany,
2010
.
21.
F.
Zahle
,
M.
Gaunaa
,
N. N.
Sørensen
, and
C.
Bak
, “
Design and wind tunnel testing of a thick, multi-element high-lift airfoil
,” in
Proceedings of EWEA—European Wind Energy Conference and Exhibition European Wind Energy Association (EWEA)
(
2012
).
22.
M.
Gaunaa
,
F.
Zahle
,
N. N.
Sørensen
, and
C.
Bak
, “
Quantification of the effects of using slats on the inner part of a 10 MW rotor
,” in
European Wind Energy Conference
(
2012
).
23.
A. M. O.
Smith
, “
High-lift aerodynamics
,”
J. Aircraft
12
,
501
530
(
1975
).
24.
D. N.
Foster
, “
Flow around wing sections with high-lift devices
,”
J. Aircraft
9
,
205
210
(
1972
).
25.
L.
Neuhaus
,
P.
Singh
,
T.
Homeyer
,
O.
Huxdorf
,
J.
Riemenschneider
,
J.
Wild
,
J.
Peinke
, and
M.
Hölling
, “
Mitigating loads by means of an active slat
,”
J. Phys.: Conf. Ser.
1037
,
022032
(
2018
).
26.
P.
Knebel
,
A.
Kittel
, and
J.
Peinke
, “
Atmospheric wind field conditions generated by active grids
,”
Exp. Fluids
51
,
471
481
(
2011
).
27.
L.
Kröger
,
J.
Frederik
,
J. W.
van Wingerden
,
J.
Peinke
, and
M.
Hölling
, “
Generation of user defined turbulent inflow conditions by an active grid for validation experiments
,”
J. Phys.: Conf. Ser.
1037
,
052002
(
2018
).
28.
L.
Kröger
,
L.
Neuhaus
,
J.
Peinke
,
G.
Gülker
, and
M.
Hölling
, “
Turbulence generation by active grids
,” in
Progress in Turbulence VIII
(
Springer International Publishing
,
2019
).
29.
H.
Heißelmann
,
J.
Peinke
, and
M.
Hölling
, “
Experimental airfoil characterization under tailored turbulent conditions
,”
J. Phys.: Conf. Ser.
753
,
072020
(
2016
).
30.
T. T. B.
Wester
,
J.
Krauss
,
L.
Neuhaus
,
A.
Hölling
,
G.
Gülker
,
M.
Hölling
, and
J.
Peinke
, “
How to design a 2D active grid for dynamic inflow modulation
,” arXiv:2012.10245 (
2020
).
31.
A.
Manso Jaume
and
J.
Wild
, “
Aerodynamic design and optimization of a high-lift device for a wind turbine airfoil
,”
New Results in Numerical and Experimental Fluid Mechanics X
(
Springer International Publishing
,
2016
), pp.
859
869
.
32.
O.
Huxdorf
,
J.
Riemenschneider
,
P.
Lorsch
, and
M.
Radestock
, “
Structural design and experimental investigations of a shape-adaptive slat for wind energy rotor blades
,” in
SMART2017-8th ECCOMAS Thematic Conference on Smart Structures and Materials
(
2017
).
33.
C. M.
Schwarz
,
S.
Ehrich
,
R.
Martin
, and
J.
Peinke
, “
Fatigue load estimations of intermittent wind dynamics based on a blade element momentum method
,”
J. Phys.: Conf. Ser.
1037
,
072040
(
2018
).
34.
C. M.
Schwarz
,
S.
Ehrich
, and
J.
Peinke
, “
Wind turbine load dynamics in the context of turbulence intermittency
,”
Wind Energy Sci.
4
,
581
594
(
2019
).
35.
J.
Jonkman
,
S.
Butterfield
,
W.
Musial
, and
G.
Scott
, “
Definition of a 5-MW reference wind turbine for offshore system development
,”
Report No. NREL/TP-500-38060
[National Renewable Energy Lab. (NREL), Golden, CO,
2009
].
36.
G.
Pereira
,
R.
Schepers
, and
M. D.
Pavel
, “
Validation of the Beddoes–Leishman dynamic stall model for horizontal axis wind turbines using MEXICO data
,”
Wind Energy
16
,
207
219
(
2013
).
37.
C.
Bak
,
F.
Zahle
,
R.
Bitsche
,
T.
Kim
,
A.
Yde
,
L. C.
Henriksen
,
M. H.
Hansen
,
J. P. A. A.
Blasques
,
M.
Gaunaa
, and
A.
Natarajan
, “
The DTU 10-MW reference wind turbine
,” in
Danish Wind Power Research
, (
Fredericia, Denmark
,
2013
), see https://orbit.dtu.dk/en/publications/the-dtu-10-mw-reference-wind-turbine.
38.
J.
Leishman
,
Principles of Helicopter Aerodynamics
, Cambridge Aerospace Series (
Cambridge University Press
,
2016
).
39.
B.
Castaing
,
Y.
Gagne
, and
E. J.
Hopfinger
, “
Velocity probability density functions of high Reynolds number turbulence
,”
Physica D
46
,
177
200
(
1990
).
40.
A.
Morales
,
M.
Wächter
, and
J.
Peinke
, “
Characterization of wind turbulence by higher-order statistics
,”
Wind Energy
15
,
391
406
(
2012
).
You do not currently have access to this content.