Control algorithms seeking to maximize wind plant power production may not require that all turbines communicate with each other for the purpose of coordinating an optimal control solution. In practice, an efficient and robust control solution may result by coordinating only turbines that are aerodynamically coupled through wake effects. The implementation of such control strategy would require information of which clusters of turbines are coupled in this way. As the wind changes direction, the clusters of coupled turbines may vary continuously within the array. Hence, in practical applications, the identification of these clusters has to be performed in real time in order to efficiently apply a coordinated control approach. Results from large eddy simulations of the flow over a wind farm array of 4 × 4 turbines are used to mimic Supervisory Control And Data Acquisition (SCADA) data needed for the cluster identification method and to evaluate the effectiveness of the yaw control applied to the identified clusters. Results show that our proposed method is effective in identifying turbine clusters, and that their optimization leads to a significant gain over the baseline. When the proposed method does not find clusters, the yaw optimization is ineffective in increasing the power of the array of turbines. This study provides a model-free method to select the turbines that should communicate with another to increase power production in real time. In addition, the analysis of the flow field provides general insights on the effect of the local induction, as well as of the wind farm blockage, on yaw optimization strategies.

1.
R.
Mikkelsen
,
J. N.
Sørensen
,
S.
Øye
, and
N.
Troldborg
, “
Analysis of power enhancement for a row of wind turbines using the actuator line technique
,”
J. Phys.: Conf. Ser.
75
,
012044
(
2007
).
2.
R. J.
Barthelmie
,
K. S.
Hansen
,
S. T.
Frandsen
,
O.
Rathmann
,
J.
Schepers
,
W.
Schlez
,
J.
Phillips
,
K.
Rados
,
A.
Zervos
,
E.
Politis
, and
P. K.
Chaviaropoulos
, “
Modelling and measuring flow and wind turbine wakes in large wind farms offshore
,”
Wind Energy
12
,
431
444
(
2009
).
3.
M.
Churchfield
,
S.
Lee
,
P.
Moriarty
,
L.
Martinez
,
S.
Leonardi
,
G.
Vijayakumar
, and
J.
Brasseur
, “
A large-eddy simulation of wind-plant aerodynamics
,” AIAA Paper No. 2012-0537,
2012
.
4.
A.
Clifton
,
A.
Smith
, and
M.
Fields
, “
Wind plant preconstruction energy estimates: Current practice and opportunities
,”
Technical Report No. NREL/TP-5000–64735
,
NREL - National Renewable Energy Laboratory
,
Golden, CO, USA
,
2016
.
5.
J.
Lee
,
E.
Son
,
B.
Hwang
, and
S.
Lee
, “
Blade pitch angle control for aerodynamic performance optimization of a wind farm
,”
Renewable Energy
54
,
124
130
(
2013
).
6.
U.
Ciri
,
M.
Rotea
, and
S.
Leonardi
, “
Model-free control of wind farms: A comparative study between individual and coordinated extremum seeking
,”
Renewable Energy
113
,
1033
1045
(
2017
).
7.
W.
Munters
and
J.
Meyers
, “
Dynamic strategies for yaw and induction control of wind farms based on large-eddy simulation and optimization
,”
Energies
11
,
177
(
2018
).
8.
P.
Fleming
,
P.
Gebraad
,
S.
Lee
,
J.
van Wingerden
,
K.
Johnson
,
M.
Churchfield
,
J.
Michalakes
,
P.
Spalart
, and
P.
Moriarty
, “
Evaluating techniques for redirecting turbine wakes using SOWFA
,”
Renewable Energy
70
,
211
218
(
2014
).
9.
P.
Gebraad
,
F.
Teeuwisse
,
J.
Van Wingerden
,
P.
Fleming
,
S.
Ruben
,
J.
Marden
, and
L.
Pao
, “
Wind plant power optimization through yaw control using a parametric model for wake effects–A CFD simulation study
,”
Wind Energy
19
,
95
114
(
2016
).
10.
U.
Ciri
,
M. A.
Rotea
, and
S.
Leonardi
, “
Effect of the turbine scale on yaw control
,”
Wind Energy
21
,
1395
1405
(
2018
).
11.
D.
Bensason
,
E.
Simley
,
O.
Roberts
,
P.
Fleming
,
M.
Debnath
,
J.
King
,
C.
Bay
, and
R.
Mudafort
, “
Evaluation of the potential for wake steering for us land-based wind power plants
,”
J. Renewable Sustainable Energy
13
,
033303
(
2021
).
12.
J.
Bartl
,
F.
Mühle
, and
L.
Sætran
, “
Wind tunnel study on power output and yaw moments for two yaw-controlled model wind turbines
,”
Wind Energy Sci.
3
,
489
502
(
2018
).
13.
F.
Campagnolo
,
V.
Petrović
,
J.
Schreiber
,
E. M.
Nanos
,
A.
Croce
, and
C. L.
Bottasso
, “
Wind tunnel testing of a closed-loop wake deflection controller for wind farm power maximization
,”
J. Phys.: Conf. Ser.
753
,
032006
(
2016
).
14.
M.
Bastankhah
and
F.
Porté-Agel
, “
Wind farm power optimization via yaw angle control: A wind tunnel study
,”
J. Renewable Sustainable Energy
11
,
023301
(
2019
).
15.
P.
Fleming
,
J.
Annoni
,
J.
Shah
,
L.
Wang
,
S.
Ananthan
,
Z.
Zhang
,
K.
Hutchings
,
P.
Wang
,
W.
Chen
, and
L.
Chen
, “
Field test of wake steering at an offshore wind farm
,”
Wind Energy Sci.
2
,
229
239
(
2017
).
16.
P.
Fleming
,
J.
King
,
K.
Dykes
,
E.
Simley
,
J.
Roadman
,
A.
Scholbrock
,
P.
Murphy
,
J. K.
Lundquist
,
P.
Moriarty
,
K.
Fleming
 et al., “
Initial results from a field campaign of wake steering applied at a commercial wind farm–Part 1
,”
Wind Energy Sci.
4
,
273
285
(
2019
).
17.
M. F.
Howland
,
S. K.
Lele
, and
J. O.
Dabiri
, “
Wind farm power optimization through wake steering
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
14495
14500
(
2019
).
18.
P.
Fleming
,
J.
King
,
E.
Simley
,
J.
Roadman
,
A.
Scholbrock
,
P.
Murphy
,
J. K.
Lundquist
,
P.
Moriarty
,
K.
Fleming
,
J. v.
Dam
 et al., “
Continued results from a field campaign of wake steering applied at a commercial wind farm–Part 2
,”
Wind Energy Sci.
5
,
945
958
(
2020
).
19.
P.
Fleming
,
M.
Sinner
,
T.
Young
,
M.
Lannic
,
J.
King
,
E.
Simley
, and
B.
Doekemeijer
, “
Experimental results of wake steering using fixed angles
,”
Wind Energy Sci. Discuss.
2021
,
1
18
(
2021
).
20.
U.
Ciri
,
M.
Rotea
, and
S.
Leonardi
, “
Increasing wind farm efficiency by yaw control: Beyond ideal studies towards a realistic assessment
,”
J. Phys.: Conf. Ser.
1618
,
022029
(
2020
).
21.
P.
Gebraad
,
J. J.
Thomas
,
A.
Ning
,
P.
Fleming
, and
K.
Dykes
, “
Maximization of the annual energy production of wind power plants by optimization of layout and yaw-based wake control
,”
Wind Energy
20
,
97
107
(
2017
).
22.
S.
Kanev
, “
Dynamic wake steering and its impact on wind farm power production and yaw actuator duty
,”
Renewable Energy
146
,
9
15
(
2020
).
23.
P. M.
Gebraad
,
M. J.
Churchfield
, and
P. A.
Fleming
, “
Incorporating atmospheric stability effects into the FLORIS engineering model of wakes in wind farms
,”
J. Phys.: Conf. Ser.
753
,
052004
(
2016
).
24.
P. A.
Fleming
,
A.
Ning
,
P. M.
Gebraad
, and
K.
Dykes
, “
Wind plant system engineering through optimization of layout and yaw control
,”
Wind Energy
19
,
329
344
(
2016
).
25.
C. R.
Shapiro
,
D. F.
Gayme
, and
C.
Meneveau
, “
Modelling yawed wind turbine wakes: A lifting line approach
,”
J. Fluid Mech.
841
,
R1
(
2018
).
26.
L.
Dong
,
W. H.
Lio
, and
F.
Meng
, “
Wake position tracking using dynamic wake meandering model and rotor loads
,”
J. Renewable Sustainable Energy
13
,
023301
(
2021
).
27.
M. F.
Howland
,
A. S.
Ghate
,
S. K.
Lele
, and
J. O.
Dabiri
, “
Optimal closed-loop wake steering–Part 1: Conventionally neutral atmospheric boundary layer conditions
,”
Wind Energy Sci.
5
,
1315
1338
(
2020
).
28.
N.
Ali
,
N.
Hamilton
,
M.
Calaf
, and
R. B.
Cal
, “
Classification of the Reynolds stress anisotropy tensor in very large thermally stratified wind farms using colormap image segmentation
,”
J. Renewable Sustainable Energy
11
,
063305
(
2019
).
29.
N.
Ali
,
M.
Calaf
, and
R. B.
Cal
, “
Clustering sparse sensor placement identification and deep learning based forecasting for wind turbine wakes
,”
J. Renewable Sustainable Energy
13
,
023307
(
2021
).
30.
B.
Li
,
K.
Sedzro
,
X.
Fang
,
B.-M.
Hodge
, and
J.
Zhang
, “
A clustering-based scenario generation framework for power market simulation with wind integration
,”
J. Renewable Sustainable Energy
12
,
036301
(
2020
).
31.
A.
Kusiak
and
W.
Li
, “
Short-term prediction of wind power with a clustering approach
,”
Renewable Energy
35
,
2362
2369
(
2010
).
32.
Y.
Liu
,
X.
Gao
,
J.
Yan
,
S.
Han
, and
D. G.
Infield
, “
Clustering methods of wind turbines and its application in short-term wind power forecasts
,”
J. Renewable Sustainable Energy
6
,
053119
(
2014
).
33.
J.
Liu
,
M.
Zhu
,
Z.
Lin
, and
S.
Chen
, “
A dynamic clustering model of wind farm based on the operation data
,”
J. Renewable Sustainable Energy
7
,
043111
(
2015
).
34.
W.
Teng
,
X.
Wang
,
Y.
Meng
, and
W.
Shi
, “
Dynamic clustering equivalent model of wind turbines based on spanning tree
,”
J. Renewable Sustainable Energy
7
,
063126
(
2015
).
35.
Y.
Huang
,
J.
Li
,
W.
Hou
,
B.
Zhang
,
Y.
Zhang
,
Y.
Li
, and
L.
Sun
, “
Improved clustering and deep learning based short-term wind energy forecasting in large-scale wind farms
,”
J. Renewable Sustainable Energy
12
,
066101
(
2020
).
36.
S.
Siniscalchi-Minna
,
C.
Ocampo-Martinez
,
F. D.
Bianchi
,
M.
De-Prada-Gil
, and
B.
De-Schutter
, “
Partitioning approach for large wind farms: Active power control for optimizing power reserve
,” in
Proceedings of IEEE Conference on Decision and Control (CDC)
(
IEEE
,
2018
), pp.
3183
3188
.
37.
S.
Siniscalchi-Minna
,
F. D.
Bianchi
,
C.
Ocampo-Martinez
,
J. L.
Domínguez-García
, and
B. D.
Schutter
, “
A non-centralized predictive control strategy for wind farm active power control: A wake-based partitioning approach
,”
Renewable Energy
150
,
656
669
(
2020
).
38.
R. J.
Stevens
and
C.
Meneveau
, “
Temporal structure of aggregate power fluctuations in large-eddy simulations of extended wind-farms
,”
J. Renewable Sustainable Energy
6
,
043102
(
2014
).
39.
G.
Cortina
,
V.
Sharma
, and
M.
Calaf
, “
Investigation of the incoming wind vector for improved wind turbine yaw-adjustment under different atmospheric and wind farm conditions
,”
Renewable Energy
101
,
376
386
(
2017
).
40.
J. R.
Annoni
,
C.
Bay
,
K. E.
Johnson
,
E.
Dall'Anese
,
E. W.
Quon
,
T. W.
Kemper
, and
P. A.
Fleming
, “
Wind direction estimation using SCADA data with consensus-based optimization
,”
Wind Energy Sci.
4
,
355
368
(
2019
).
41.
J.
Annoni
,
C.
Bay
,
T.
Taylor
,
L.
Pao
,
P.
Fleming
, and
K.
Johnson
, “
Efficient optimization of large wind farms for real-time control
,” in
Proceedings of Annual American Control Conference (ACC)
(
IEEE
,
2018
), pp.
6200
6205
.
42.
M.
Sinner
,
E.
Simley
,
J.
King
,
P.
Fleming
, and
L. Y.
Pao
, “
Power increases using wind direction spatial filtering for wind farm control: Evaluation using FLORIS, modified for dynamic settings
,”
J. Renewable Sustainable Energy
13
,
023310
(
2021
).
43.
J.
Annoni
,
C.
Bay
,
K.
Johnson
, and
P.
Fleming
, “
Short-term forecasting across a network for the autonomous wind farm
,” in
Proceedings of American Control Conference (ACC)
(
IEEE
,
2019
), pp.
2837
2842
.
44.
A.
Ozbay
,
W.
Tian
,
Z.
Yang
, and
H.
Hu
, “
Interference of wind turbines with different yaw angles of the upstream wind turbine
,” AIAA Paper No. 2012-2719,
2012
.
45.
K. S.
Hansen
,
R. J.
Barthelmie
,
L. E.
Jensen
, and
A.
Sommer
, “
The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm
,”
Wind Energy
15
,
183
196
(
2012
).
46.
A.
Onder
and
J.
Meyers
, “
On the interaction of very-large-scale motions in a neutral atmospheric boundary layer with a row of wind turbines
,”
J. Fluid Mech.
841
,
1040
1072
(
2018
).
47.
H.
Kadum
,
S.
Rockel
,
M.
Hölling
,
J.
Peinke
, and
R. B.
Cal
, “
Wind turbine wake intermittency dependence on turbulence intensity and pitch motion
,”
J. Renewable Sustainable Energy
11
,
053302
(
2019
).
48.
S.
Gambuzza
and
B.
Ganapathisubramani
, “
The effects of free-stream turbulence on the performance of a model wind turbine
,”
J. Renewable Sustainable Energy
13
,
023304
(
2021
).
49.
N.
Ali
,
M.
Calaf
, and
R. B.
Cal
, “
Reduced-order modeling of the wake behind a single wind turbine
,” in
iTi Conference on Turbulence
(
Springer
,
2018
), pp.
285
290
.
50.
N.
Ali
and
R. B.
Cal
, “
Data-driven modeling of the wake behind a wind turbine array
,”
J. Renewable Sustainable Energy
12
,
033304
(
2020
).
51.
L. J.
Lukassen
,
R. J.
Stevens
,
C.
Meneveau
, and
M.
Wilczek
, “
Modeling space-time correlations of velocity fluctuations in wind farms
,”
Wind Energy
21
,
474
487
(
2018
).
52.
J.
Bossuyt
,
M. F.
Howland
,
C.
Meneveau
, and
J.
Meyers
, “
Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel
,”
Exp. Fluids
58
,
1
17
(
2017
).
53.
F.
Bernardoni
,
U.
Ciri
,
M.
Rotea
, and
S.
Leonardi
, “
Real-time identification of clusters of turbines
,”
J. Phys.: Conf. Ser.
1618
,
022032
(
2020
).
54.
J.
Jonkman
,
S.
Butterfiled
,
W.
Musial
, and
G.
Scott
, “
Definition of a 5-MW reference wind turbine for offshore system development
,”
Technical Report No. NREL/TP-500–38060
,
NREL - National Renewable Energy Laboratory
,
Golden, CO, USA
,
2009
.
55.
P.
Orlandi
,
Fluid Flow Phenomena: A Numerical Toolkit
(
Kluwer Academic
,
2000
).
56.
P.
Orlandi
and
S.
Leonardi
, “
DNS of turbulent channel flows with two- and three-dimensional roughness
,”
J. Turbul
.
7
(
53
),
1
22
(
2006
).
57.
C.
Santoni
,
U.
Ciri
,
M.
Rotea
, and
S.
Leonardi
, “
Development of a high fidelity CFD code for wind farm control
,” in
Proceedings of American Control Conference (ACC)
(
IEEE
,
2015
), pp.
1715
1720
.
58.
C.
Santoni
,
K.
Carrasquillo
,
I.
Arenas-Navarro
, and
S.
Leonardi
, “
Effect of tower and nacelle on the flow past a wind turbine
,”
Wind Energy
20
,
1927
1939
(
2017
).
59.
U.
Ciri
,
G.
Petrolo
,
M. V.
Salvetti
, and
S.
Leonardi
, “
Large-eddy simulations of two in-line turbines in a wind tunnel with different inflow conditions
,”
Energies
10
(
6
),
821
(
2017
).
60.
U.
Ciri
,
M.
Salvetti
,
K.
Carrasquillo
,
C.
Santoni
,
G.
Iungo
, and
S.
Leonardi
, “
Effects of the subgrid-scale modeling in the large-eddy simulations of wind turbines
,” in
Direct and Large-Eddy Simulation X
(
Springer
,
2018
), pp.
109
115
.
61.
K. E.
Johnson
,
L. Y.
Pao
,
M. J.
Balas
, and
L. J.
Fingersh
, “
Control of variable-speed wind turbines: Standard and adaptive techniques for maximizing energy capture
,”
IEEE Control Syst. Mag.
26
,
70
81
(
2006
).
62.
J. H.
Laks
,
L. Y.
Pao
, and
A. D.
Wright
, “
Control of wind turbines: Past, present, and future
,” in
Proceedings of American Control Conference (ACC
) (
IEEE
,
2009
), pp.
2096
2103
.
63.
I.
Orlanski
, “
A simple boundary condition for unbounded hyperbolic flows
,”
J. Comput. Phys.
21
,
251
269
(
1976
).
64.
C.
Santoni
,
E. J.
García-Cartagena
,
U.
Ciri
,
L.
Zhan
,
G.
Valerio Iungo
, and
S.
Leonardi
, “
One-way mesoscale-microscale coupling for simulating a wind farm in North Texas: Assessment against SCADA and LiDAR data
,”
Wind Energy
23
,
691
710
(
2020
).
65.
S.
Leonardi
and
I. P.
Castro
, “
Channel flow over large cube roughness: A direct numerical simulation study
,”
J. Fluid Mech.
651
,
519
539
(
2010
).
66.
M. A.
Rotea
, “
Dynamic programming framework for wind power maximization
,”
IFAC Proc. Vol.
47
,
3639
3644
(
2014
).
67.
T. F.
Pedersen
, “
On wind turbine power performance measurements at inclined airflow
,”
Wind Energy
7
,
163
176
(
2004
).
68.
T.
Burton
,
D.
Sharpe
,
N.
Jenkins
, and
E.
Bossanyi
,
Wind Energy Handbook
(
Wiley Online Library
,
2001
), Vol.
2
.
69.
M.
Adaramola
and
P.-Å.
Krogstad
, “
Experimental investigation of wake effects on wind turbine performance
,”
Renewable Energy
36
,
2078
2086
(
2011
).
70.
M.
Bastankhah
and
F.
Porté-Agel
, “
A wind-tunnel investigation of wind-turbine wakes in yawed conditions
,”
J. Phys.: Conf. Ser.
625
,
012014
(
2015
).
71.
J.
Meyers
and
C.
Meneveau
, “
Optimal turbine spacing in fully developed wind farm boundary layers
,”
Wind Energy
15
,
305
317
(
2012
).
72.
J.
Bossuyt
,
R.
Scott
,
N.
Ali
, and
R. B.
Cal
, “
Quantification of wake shape modulation and deflection for tilt and yaw misaligned wind turbines
,”
J. Fluid Mech.
917
,
A3
(
2021
).
73.
J.
Bleeg
,
M.
Purcell
,
R.
Ruisi
, and
E.
Traiger
, “
Wind farm blockage and the consequences of neglecting its impact on energy production
,”
Energies
11
,
1609
(
2018
).
74.
A.
Segalini
and
J.-Å.
Dahlberg
, “
Blockage effects in wind farms
,”
Wind Energy
23
,
120
128
(
2020
).
75.
Á.
Jiménez
,
A.
Crespo
, and
E.
Migoya
, “
Application of a les technique to characterize the wake deflection of a wind turbine in yaw
,”
Wind Energy
13
,
559
572
(
2010
).
76.
M.
Bastankhah
and
F.
Porté-Agel
, “
Experimental and theoretical study of wind turbine wakes in yawed conditions
,”
J. Fluid Mech.
806
,
506
541
(
2016
).
77.
M. A.
Rotea
, “
Logarithmic power feedback for extremum seeking control of wind turbines
,”
IFAC
50
(
1
),
4504
4509
(
2017
).
78.
M. A.
Rotea
, “
Method and system for using logarithm of power feedback for extremum seeking control
,” U.S. patent 16/617 (
2020
), p.
911
.
79.
U.
Ciri
,
S.
Leonardi
, and
M. A.
Rotea
, “
Evaluation of log –of–power extremum seeking control for wind turbines using large eddy simulations
,”
Wind Energy
22
,
992
1002
(
2019
).
You do not currently have access to this content.