This study focuses on the physico-chemical properties and antioxidant activity of wood vinegar and tar fraction in bio-oil produced from hazelnut shell pyrolysis at 400–1000 °C. In all cases, temperature plays a key role in the two fraction characteristics in bio-oil; phenols are absolutely dominant compounds, accounting for over 41 wt. % in wood vinegar and above 50 wt. % in tar. The hydroxyl radical scavenging experiment revealed that the higher phenol content resulted in the stronger antioxidant activity, and tar contained more phenolic compounds, which should have shown more antioxidant activity compared with wood vinegar, but under the influence of tar complex composition and properties, the hydroxyl radical binding reactions were severely blocked, which led to less antioxidant activity, and wood vinegar showed better potential as a natural antioxidant.

1.
Bardalaia
,
M.
,
Bordoloia
,
N. K.
, and
Mahantab
,
D. K.
, “
Production and biodegradability analysis of bael shell pyrolysis oil
,”
Mater. Today: Proc.
4
(
2
),
603
610
(
2017
).
2.
Bayerbach
,
R.
and
Meier
,
D.
, “
Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin): Part IV. Structure elucidation of oligomeric molecules
,”
J. Anal. Appl. Pyrolysis
85
(
1
),
98
107
(
2009
).
3.
Bertero
,
M.
,
Horacio
,
A. G.
,
Camilo
,
J. O.
,
Carlos
,
A. G.
,
Edgardo
,
L. C.
, and
Ulises
,
S.
, “
Characterization of the liquid products in the pyrolysis of residual chañar and palm fruit biomasses
,”
Fuel
116
,
409
414
(
2014
).
4.
Chen
,
X.
,
Chen
,
Y.
,
Yang
,
H.
,
Chen
,
W.
,
Wang
,
X.
, and
Chen
,
H.
, “
Fast pyrolysis of cotton stalk biomass using calcium oxide
,”
Bioresour. Technol.
233
,
15
20
(
2017
).
5.
Chen
,
Y. Q.
,
Fang
,
Y.
,
Yang
,
H. P.
,
Xin
,
S. Z.
,
Zhang
,
X.
,
Wang
,
X. H.
, and
Chen
,
H. P.
, “
Effect of volatiles interaction during pyrolysis of cellulose, hemicellulose, and lignin at different temperatures
,”
Fuel
248
(
15
),
1
7
(
2019
).
6.
Chiodo
,
V.
,
Zafarana
,
G.
,
Maisano
,
S.
,
Freni
,
S.
, and
Urbani
,
F.
, “
Pyrolysis of different biomass: Direct comparison among Posidonia Oceanica, Lacustrine Alga and White-Pine
,”
Fuel
164
(
15
),
220
227
(
2016
).
7.
Demirbas
,
A.
, “
Effect of temperature on pyrolysis products from four nut shells
,”
J. Anal. Appl. Pyrolysis
76
,
285
289
(
2006
).
8.
Dhyani
,
V.
and
Bhaskar
,
T.
, “
A comprehensive review on the pyrolysis of lignocellulosic biomass
,”
Renewable Energy
129
,
695
716
(
2017
).
9.
Fuentes-Cano
,
D.
,
Gómez-Barea
,
A.
,
Nilsson
,
S.
, and
Ollero
,
P.
, “
Kinetic modeling of tar and light hydrocarbons during the thermal conversion of biomass
,”
Energy Fuels
30
(
1
),
377
385
(
2016
).
10.
Garcia-Perez
,
M.
,
Chaala
,
A.
,
Pakdel
,
H.
,
Kretschmer
,
D.
, and
Roy
,
C.
, “
Characterization of bio-oils in chemical families
,”
Biomass Bioenergy
31
(
4
),
222
242
(
2007
).
11.
Guedes
,
R. E.
,
Aderval
,
S. L.
, and
Torres
,
A. R.
, “
Operating parameters for bio-oil production in biomass pyrolysis: A review
,”
J. Anal. Appl. Pyrolysis
129
,
134
149
(
2018
).
12.
Hosßgün
,
E. Z.
,
Berikten
,
D.
,
Kıvanç
,
M.
, and
Bozan
,
B.
, “
Ethanol production from hazelnut shells through enzymatic saccharification and fermentation by low temperature alkali pretreatment
,”
Fuel
196
(
2
),
280
287
(
2017
).
13.
Kajsa
,
W.
,
Linda
,
P.
, and
Markus
,
B.
, “
Thermal decomposition of hemicelluloses
,”
J. Anal. Appl. Pyrolysis
110
(
1
),
130
137
(
2014
).
14.
Kim
,
S. J.
,
Jung
,
S. H.
, and
Kim
,
J. S.
, “
Fast pyrolysis of palm kernel shells: Influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds
,”
Bioresour. Technol.
101
(
23
),
294
300
(
2010
).
15.
Kumar
,
V.
and
Nanda
,
M.
, “
Biomass pyrolysis-current status and future directions
,”
Energy Sources, Part A
38
(
19
),
2914
2921
(
2016
).
16.
Mahmood
,
H.
,
Ramzan
,
N.
,
Shakeel
,
A.
,
Moniruzzaman
,
M.
,
Iqbal
,
T.
,
Kazmi
,
M. A.
, and
Sulaiman
,
M.
, “
Kinetic modeling and optimization of parameters for biomass pyrolysis: A comparison of different lignocellulosic biomass
,”
Energy Sources, Part A
41
,
1690
1700
(
2019
).
17.
Neha
,
G.
and
Ashish
,
C.
, “
Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process
,”
Energy
190
,
116434
(
2020
).
18.
Omoriyekomwan
,
J. E.
,
Tahmasebi
,
A.
, and
Yu
,
J. L.
, “
Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell
,”
Bioresour. Technol.
207
,
188
196
(
2016
).
19.
Paenpong
,
C. A.
and
Pattiya
,
A.
, “
Effect of pyrolysis and moving-bed granular filter temperatures on the yield and properties of bio-oil from fast pyrolysis of biomass
,”
Fuel
119
,
40
51
(
2016
).
20.
Pütün
,
A. E.
and
Özcan
,
A.
, “
Pyrolysis of hazelnut shells in a fixed-bed tubular reactor: Yields and structural analysis of bio-oil
,”
J. Anal. Appl. Pyrolysis
52
(
1
),
33
49
(
1999
).
21.
Qin
,
W.
,
Han
,
M. X.
, and
Zhong
,
Z.
, “
Antioxidant activities and chemical profiles of pyroligneous acids from walnut shell
,”
J. Anal. Appl. Pyrolysis
88
,
149
154
(
2010
).
22.
Sanginés
,
P.
,
Domínguez
,
M. P.
,
Sánchez
,
F.
, and
San Miguel
,
G.
, “
Slow pyrolysis of olive stones in a rotary kiln: Chemical and energy characterization of solid, gas, and condensable products
,”
J. Renewable Sustainable Energy
7
,
043103
(
2015
).
23.
Sindhu
,
M.
,
Zainul
,
A. Z.
, and
Nur
,
F. M.
, “
Antioxidant property and chemical profile of pyroligneous acid from pineapple plant waste biomass
,”
Process Biochem.
50
,
1985
1992
(
2015
).
24.
Wu
,
Q. M.
,
Zhang
,
S. Y.
,
Hou
,
B. X.
,
Zheng
,
H. J.
,
Deng
,
W. X.
,
Liu
,
D. H.
, and
Tang
,
W. J.
, “
Study on the preparation of wood vinegar from biomass residues by carbonization process
,”
Bioresour. Technol.
179
,
98
103
(
2015
).
25.
Xie
,
H. Q.
,
Yu
,
Q. B.
,
Qin
,
Q.
,
Zhang
,
H. T.
, and
Fu
,
X. L.
, “
Bio-oil production by fast pyrolysis from agriculture residue in northeastern China
,”
J. Renewable Sustainable Energy
5
,
013103
(
2013
).
26.
Xie
,
H. Q.
,
Yu
,
Q. B.
,
Qin
,
Q.
,
Zhang
,
H. T.
, and
Li
,
P.
, “
Study on pyrolysis characteristics and kinetics of biomass and its components
,”
J. Renewable Sustainable Energy
5
,
013122
(
2013
).
27.
Yang
,
H. P.
,
Coolman
,
R.
,
Karanjkar
,
P.
,
Wang
,
H. Y.
,
Dornath
,
P.
,
Chen
,
H. P.
,
Fan
,
W.
,
Conner
,
W. C.
,
Mountziaris
,
T. J.
, and
Huber
,
G.
, “
The effects of contact time and coking on the catalytic fast pyrolysis of cellulose
,”
Green Chem.
19
(
1
),
286
297
(
2017
).
28.
Zhang
,
X. Y.
,
Zhao
,
W. D.
,
Huang
,
J. Q.
,
Ni
,
K.
, and
Jun
,
F. W.
, “
Analysis of bio-oil physicochemical properties and aging process
,”
Energy Sources, Part A
40
(
18
),
2117
2123
(
2018
).
29.
Zhao
,
C. X.
,
Jiang
,
E. C.
, and
Chen
,
A. H.
, “
Volatile production from pyrolysis of cellulose, hemicellulose and lignin
,”
J. Energy Inst.
90
,
902
913
(
2017
).
30.
Zubair Yahaya
,
A.
,
Rao Somalu
,
M.
,
Muchtar
,
A.
,
Anwar Sulaiman
,
S.
, and
Ramli Wan Daud
,
W.
, “
Effects of temperature on the chemical composition of tars produced from the gasification of coconut and palm kernel shells using downdraft fixed-bed reactor
,”
Fuel
265
,
116910
(
2020
).
You do not currently have access to this content.