In this study, a heterogeneous acid catalyst composed of 12-molybdophosphoric acid (H3PMo12O40.xH2O) anchored in titanium oxide (TiO2) was synthesized using the incipient-wetness method. The catalyst was characterized by acid–base titration method in order to determine surface acidity, thermogravimetric analysis, and x-ray diffraction, Fourier transformed infrared spectroscopy, scanning electron microscopy, and energy dispersion x-ray spectroscopy. The catalyst was applied in transesterification reactions for biodiesel production from the waste cooking oil following a central composite design of centered face 23 and a statistical model was developed in order to describe the behavior of the ester content as a function of the independent variables temperature, alcohol:oil molar ratio, and catalyst dosage. The statistical model (R2 = 0.8943) was validated and showed a relative error below 3% between the experimental and predicted values. By means of linear regression methods and response surface methodology, the conditions of biodiesel synthesis reaction were optimized and 94.5% conversion into esters was obtained at 190 °C, alcohol:oil molar ratio of 90:1, and catalyst dosage of 5 wt. %. The univariate study of the reaction time showed that the reaction processed in 4 h presented the highest conversion in terms of ester content in the biodiesel produced. The proposed catalyst showed good catalytic activity up to the fourth reaction cycle, indicating its good development and application prospectus.

1.
Ahmad
,
T.
,
Danish
,
M.
,
Kale
,
P.
,
Geremew
,
B.
,
Adeloju
,
S. B.
,
Nizami
,
M.
, and
Ayoub
,
M.
, “
Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations
,”
Renewable Energy
139
,
1272
1280
(
2019
).
2.
Alhassan
,
F. H.
,
Rashid
,
U.
,
Yunus
,
R.
,
Sirat
,
K.
,
Lokman
,
I. M.
, and
Taufiq-Yap
,
Y. H.
, “
Synthesis of ferric-manganese doped tungstated zirconia nanoparticles as heterogeneous solid superacid catalyst for biodiesel production from waste cooking oil
,”
Int. J. Green Energy
12
,
987
994
(
2015
).
3.
Almohalla
,
M.
,
Rodriguez-Ramos
,
I.
, and
Guerrero-Ruiz
,
A.
, “
Comparative study of three heteropolyacids supported on carbon materials as catalysts for ethylene production from bioethanol
,”
Catal. Sci. Technol.
7
,
1892
1901
(
2017
).
4.
Araujo
,
C. D. M.
,
Andrade
,
C. C.
,
Silva
,
E. S.
, and
Dupas
,
F. A.
, “
Biodiesel production from used cooking oil: A review
,”
Renewable Sustainable Energy Rev.
27
,
445
452
(
2013
).
5.
Aziz
,
M. A. A.
,
Puad
,
K.
,
Triwahyono
,
S.
,
Jalil
,
A. A.
,
Khayoon
,
M. S.
,
Atabani
,
A. E.
,
Ramli
,
Z.
,
Majid
,
Z. A.
,
Prasetyoko
,
D.
, and
Hartando
,
D.
, “
Transesterification of croton megalocarpus oil to biodiesel over WO3 supported on sílica mesoporous-macroparticles catalyst
,”
Chem. Eng. J.
316
,
882
892
(
2017
).
6.
Bastos
,
R. R. C.
,
Correa
,
A. P. L.
,
Da luz
,
P. T. S.
,
Filho
,
G. N. R.
,
Zamian
,
J. R.
, and
Conceicão
,
L. R. V.
, “
Optimization of biodiesel production using sulfonated carbon-based catalyst from an amazon agro-industrial waste
,”
Energy Convers. Manage.
205
,
112457
(
2020
).
7.
Boehm
,
H. P.
, “
Some aspects of the surface chemistry of carbon blacks and other carbons
,”
Carbon
32
,
759
769
(
1994
).
8.
Brito
,
G. M.
,
Chicon
,
M. B.
,
Coelho
,
E. R. C.
,
Faria
,
D. N.
, and
Freitas
,
J. C. C.
, “
Eco-green biodiesel production from domestic waste cooking oil by transesterification using LiOH into basic catalysts mixtures
,”
J. Renewable Sustainable Energy
12
,
043101
(
2020
).
9.
Carminati
,
S. A.
,
Arantes
,
A. C. C.
,
Oliveira
,
A. C. S.
, and
Bianchi
,
M. L.
, “
Enhancing the sugars production yield by supporting H3PW12O40 heteropoly acid on activated carbon for use as catalyst in hydrolysis of cellulose
,”
Rev. Matér.
23
(
4
),
1
9
(
2018
). 
10.
Conceição
,
L. R. V.
,
Carneiro
,
L. M.
,
Giordani
,
D. S.
, and
De Castro
,
H. F.
, “
Synthesis of biodiesel from macaw palm oil using mesoporous solid catalyst comprising 12-molybdophosphoric acid and niobia
,”
Renewable Energy
113
,
119
128
(
2017
).
11.
Conceição
,
L. R. V.
,
Costa
,
C. E. F.
,
Filho
,
G. N. R.
, and
Zamian
,
J. R.
, “
Obtaining and characterization of biodiesel from jupati (Raphia taedigera Mart.) oil
,”
Fuel
90
,
2945
2949
(
2011
).
12.
Conceição
,
L. R. V.
,
Reis
,
C. E. R.
,
Lima
,
R.
,
Cortez
,
D. V.
, and
Castro
,
H. F.
, “
Keggin-structure heteropolyacid supported on alumina to be used in trans/esterification of high acid feedstocks
,”
RSC Adv.
9
,
23450
23458
(
2019
).
13.
Correa
,
A. P. L.
,
Bastos
,
R. R. C.
,
Filho
,
G. N. R.
,
Zamian
,
J. R.
, and
Conceicao
,
L. R. V.
, “
Preparation of sulfonated carbon-based catalysts from murumuru kernel shell and their performance in the esterification reaction
,”
RSC Adv.
10
,
20245
20256
(
2020
).
14.
Devikala
,
S.
,
Kamaraj
,
P.
, and
Arthanareeswari
,
M.
, “
AC conductivity studies of PMMA/TiO2 composites
,”
Mater. Today
5
,
8678
8682
(
2018
).
15.
Elgharbawy
,
A. S.
,
Sadik
,
W. A.
,
Sadek
,
O. M.
, and
Kasaby
,
M. A.
, “
A review on biodiesel feedstocks and production technologies
,”
J. Chil. Chem. Soc.
66
,
5098
5109
(
2021
).
16.
Gardy
,
J.
,
Hassapour
,
A.
,
Lai
,
X.
,
Ahmed
,
M. H.
, and
Rehan
,
M.
, “
Biodiesel production from used cooking oil using a novel surface functionalised TiO2 nano-catalyst
,”
Appl. Catal., B
207
,
297
310
(
2017
).
17.
Ghalandari
,
A.
,
Taghizadeh
,
M.
, and
Rahmani
,
M.
, “
Statistical optimization of the biodiesel production process using a magnetic core-mesoporous shell KOH/Fe3O4@γ-Al2O3 nanocatalyst
,”
Chem. Eng. Techn.
42
,
89
99
(
2018
).
18.
Haaland
,
P. D.
,
Experimental Design in Biotechnology
(
Marcel Dekker Inc
.,
New York
,
1989
).
19.
Hanaor
,
D. A. H.
and
Sorrel
,
C. C.
, “
Review of the anatase to rutile phase transformation
,”
J. Mater. Sci.
46
,
855
874
(
2011
).
20.
Hassan
,
S. M.
,
Ahmed
,
A. I.
, and
Mannaa
,
M. A.
, “
Structural, photocatalytic, biological and catalytic properties of SnO2/TiO2 Nanoparticles
,”
Ceram. Int.
44
,
6201
6211
(
2018
).
21.
Ibrahim
,
A. A.
,
Hassan
,
S. M.
, and
Mannaa
,
M. A.
, “
Mesoporous tin oxide-supported phosphomolybdic acid as high performance acid catalysts for the synthesis of hydroquinone diacetate
,”
Colloids Surf., A
586
,
124248
(
2019
).
22.
Jamil
,
U.
,
Khoja
,
A. H.
,
Liaquat
,
R.
,
Naqvi
,
S. R.
,
Omar
,
W. N. N. W.
, and
Amin
,
N. A. S.
, “
Copper and calcium-based metal organic framework (MOF) catalyst for biodiesel production from waste cooking oil: A process optimization study
,”
Energy Convers. Manage.
215
,
112934
(
2020
).
23.
Jedsukontorn
,
T.
,
Saito
,
N.
, and
Hunsom
,
M.
, “
Photocatalytic behavior of metal-decorated TiO2 and their catalytic activity for transformation of glycerol to value added compounds
,”
Mol. Catal.
432
,
160
171
(
2017
).
24.
Jiang
,
J.
,
Zheng
,
R.
,
Jia
,
Y.
,
Guo
,
L.
,
Huang
,
M.
,
Hu
,
J.
, and
Xia
, “
Investigation of SO2 and H2O poisoning over Cu-HPMo/TiO2 catalyst for low temperature SCR: An experimental and DFT study
,”
Mol. Catal.
493
,
111044
(
2020
).
25.
Kaur
,
M.
,
Malhotra
, and
Ali
,
A.
, “
Tungsten supported Ti/SiO2 nanoflowers as reusable heterogeneous catalyst for biodiesel production
,”
Renewable Energy
116
,
109
119
(
2018
).
26.
Kazemifard
,
S.
,
Nayebzadeh
,
H.
,
Saghatoleslami
,
N.
, and
Safakish
,
E.
, “
Assessment the activity of magnetic KOH/Fe3O4@Al2O3 core-shell nanocatalyst in transesterification reaction: Effect of Fe/Al ratio on structural and performance
,”
Environ. Sci. Pollut. Res.
25
,
32811
32821
(
2018
).
27.
Kefas
,
H. M.
,
Yunus
,
R.
,
Rashid
,
U.
, and
Taufiq-Yap
,
Y. H.
, “
Modified sulfonation method for converting carbonized glucose into solid acid catalyst for the esterification of palm fatty acid distillate
,”
Fuel
229
,
68
78
(
2018
).
28.
Lee
,
H. V.
,
Juan
,
J. C.
,
Taufiq-Yap
,
Y. H.
,
Kong
,
P. S.
, and
Rahman
,
N. A.
, “
Advancement in heterogeneous base catalyzed technology: An efficient production of biodiesel fuels
,”
J. Renewable Sustainable Energy
7
,
032701
(
2015
).
29.
Lima
,
R. P.
,
Luz
,
P. T. S.
,
Braga
,
M.
,
Santos
,
P. R.
,
Costa
,
C. E. F.
,
Zamian
,
J. R.
,
Nascimento
,
L. A. S.
, and
Filho
,
G. N. R.
, “
Murumuru (Astrocaryum murumuru Mart.) butter and oils of buriti (Mauritia flexuosa Mart.) and pracaxi (Pentaclethra macroloba (Willd.) Kuntze) can be used for biodiesel production: Physico-chemicalproperties and thermal and kinetic studies
,”
Ind. Crops Prod.
97
,
536
544
(
2017
).
30.
Lin
,
Y. H.
,
Weng
,
C. H.
,
Srivastav
,
A. L.
,
Lin
,
Y. T.
, and
Tzeng
,
J. H.
, “
Facile synthesis and characterization of N-doped TiO2 photocatalyst and its visible-light activity for photo-oxidation of ethylene
,”
J. Nanomater.
2015
,
1
10
.
31.
Liu
,
Y.
,
Zhang
,
P.
,
Fan
,
M.
, and
Jiang
,
P.
, “
Biodiesel production from soybean oil catalyzed by magnetic nanoparticle MgFe2O4@Cao
,”
Fuel
164
,
314
321
(
2016
).
32.
Mane
,
S. R.
,
Walekar
,
B. J.
,
Mane
,
R. M.
,
Kondalkar
,
V. V.
,
Ghanwat
,
V. B.
, and
Bhosale
,
P. N.
, “
Molybdenum heteropolyoxometalate thin films for solar cell applications
,”
Proc. Mater. Sci.
6
,
1104
1109
(
2014
).
33.
Mares
,
E. K. L.
,
Gonçalves
,
M. A.
,
Da Luz
,
P. T. S.
,
Filho
,
G. N. R.
,
Zamian
,
J. R.
, and
Conceição
,
L. R. V.
, “
Acai seed ash as a novel basic heterogeneous catalyst for biodiesel synthesis: Optimization of the biodiesel production process
,”
Fuel
299
,
120887
(
2021
).
34.
Micek-Ilnicka
,
A.
, “
The role of water in the catalysis on solid heteropolyacids
,”
J. Mol. Catal. A
308
,
1
14
(
2009
).
35.
Moazeni
,
F.
,
Chen
,
Y. C.
, and
Zhang
,
G.
, “
Enzymatic transesterification for biodiesel production from used cooking oil, a review
,”
J. Clean Prod.
216
,
117
128
(
2019
).
36.
Mohadesi
,
M.
,
Aghel
,
B.
,
Maleki
,
M.
, and
Ansari
,
A.
, “
The use of KOH/Clinoptilolite catalyst in pilot of microreactor for biodiesel production from waste cooking oil
,”
Fuel
263
,
116659
(
2020
).
37.
Monge
,
J. A.
,
El Bakkali
,
B.
,
Trautwein
,
G.
, and
Reinoso
,
S.
, “
Zirconia-supported tungstophosphoric heteropolyacid as heterogeneous acid catalyst for biodiesel production
,”
Appl. Catal., B
224
,
194
203
(
2018
).
38.
Morais
,
F. R.
,
Lopes
,
C. S.
,
Lima Neto
,
E. G.
,
Ramos
,
A. L. D.
, and
Silva
,
G.
, “
Influência da temperatura e da razão molar na produção contínua de biodiesel
,”
Sci. Plena
9
,
104
202
(
2013
) .
39.
Musa
,
I. A.
, “
The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process
,”
Egypt J. Pet.
25
,
21
31
(
2016
).
40.
Nogueira
,
J. S. M.
,
Silva
,
J. P. A.
,
Mussato
,
S. I.
, and
Carneiro
,
L. M.
, “
Synthesis and application of heterogeneous catalysts based on heteropolyacids for 5 hydroxymethylfurfural production from glucose
,”
Energies
3
(
13
),
655
(
2020
).
41.
Oliveira
,
A. N.
,
Lima
,
M. A. B.
,
Pires
,
L. H. O.
,
Luz
,
P. T. S.
,
Silva
,
M. R.
,
Rocha filho
,
G. N.
,
Angelica
,
R. S.
,
Costa
,
C. E. F.
,
Luque
,
R.
, and
Nascimento
,
L. A. S.
, “
Bentonites modified with phosphomolybdic heteropolyacid (HPMo) for biowaste to biofuel production
,”
Materials
12
,
1431
(
2019
).
42.
Onukwuli
,
D. O.
,
Emembolu
,
L. N.
,
Ude
,
C. N.
,
Aliozo
,
S. O.
, and
Menkiti
,
M. C.
, “
Optimization of biodiesel production from refined cotton seed oil and its characterization
,”
Egypt J. Pet.
26
,
103
110
(
2017
).
43.
Pantoja
,
S. S.
,
Conceição
,
L. R. V.
,
Costa
,
C. E. F.
,
Zamian
,
J. R.
, and
Rocha Filho
,
G. N.
, “
Oxidative stability of biodiesels produced from vegetable oil having different degrees of unsaturation
,”
Energy Convers. Manage.
74
,
293
298
(
2013
).
44.
Sani
,
Y. M.
,
Wan
,
W. M. A. W.
, and
Aziz
,
A. R. A.
, “
Activity of solid acid catalysts for biodiesel production: A critical review
,”
Appl. Catal., A
470
,
140
161
(
2014
).
45.
Silva
,
C.
,
Weschenfelder
,
T. A.
,
Rovani
,
S.
,
Corazza
,
F. C.
,
Corazza
,
M. L.
,
Dariva
,
C.
, and
Oliveira
,
J. V.
, “
Continuous production of fatty acid ethyl esters from soybean oil in compressed ethanol
,”
Ind. Eng. Chem. Res.
46
,
5304
5309
(
2007
).
46.
Silveira Junior
,
E. G.
,
Barcelos
,
L. F. T.
,
Perez
,
V. H.
,
Justo
,
O. R.
,
Ramirez
,
L. C.
,
Filho
,
L. M. R.
, and
Castro
,
M. P. P.
, “
Biodiesel production from non-edible forage turnip oil by extruded catalyst
,”
Ind. Crops Prod.
139
,
111503
(
2019
).
47.
Simonelli
,
G.
,
Moraes
,
C.
,
Pires
,
C. A. M.
, and
Santos
,
L. C. L.
, “
Multivariate study and optimization of biodiesel production using commercial surfactants
,”
Chem. Ind. Chem. Eng.
25
(
2
),
183
192
(
2019
).
48.
Taghavi
,
M.
,
Tabatabaee
,
M.
,
Ehrampoush
,
M.
,
Ghaneia
,
M.
,
Afsharnia
,
M.
,
Alami
,
A.
, and
Mardaneh
,
J.
, “
Synthesis, characterization and photocatalytic activity of TiO2/ZnO-supported phosphomolybdic acid nanocomposites
,”
J. Mol. Liq.
249
,
546
553
(
2017
).
49.
Yang
,
X.
,
Li
,
X.
,
Liu
,
J.
, and
Rong
,
L.
, “
Ni/phosphomolybdic acid immobilized on carbon nanotubes for catalytic cracking of Jatropha oil
,”
Chem. Phys. Lett.
720
,
42
51
(
2019
).
50.
Yu
,
H.
,
Niu
,
S.
,
Bai
,
T.
,
Tang
,
X.
, and
Lu
,
C.
, “
Microwave-assisted preparation of coal-based heterogeneous acid catalyst and its catalytic performance in esterification
,”
J. Clean Prod.
183
,
67
76
(
2018
).
51.
Zheng
,
S.
,
Kates
,
M.
,
Dube
,
M. A.
, and
McLean
,
D. D.
, “
Acid-catalyzed production of biodiesel from waste frying oil
,”
Biomass Bioenergy
30
,
267
272
(
2006
).
You do not currently have access to this content.