Loss of solar rays in linear Fresnel concentrators (LFCs) through the width difference of primary reflectors and absorber tube led the scientists to add secondary reflectors to these concentrators. This secondary reflector increases the optical efficiency, as it is mentioned in the literature. In this paper, the effect of the secondary reflector on energy and exergy efficiencies was investigated. To find the most efficient design, four orientations of secondary reflectors including circular, flat, few segmented, and parabolic were studied. The reference values for the thermodynamic properties for all types of secondary reflectors were considered, and the systems were simulated in the EES environment by applying the supposed parameters at the base point. The results showed that lack of secondary reflectors decreased the thermal efficiency of the system. It is found that the flat geometry increased the energy and exergy efficiencies, while the cost was increased. However, the low manufacturing cost makes it acceptable as it was appropriate in optical aspects. The energy and exergy efficiencies were enhanced in circular and parabolic designs less than that in the flat design. The few flat segmented model has the most energy efficiency. However, much increment in efficiencies justifies growth in costs. The parabolic secondary reflector had the least cost increment. Effects of the variations of the temperature of the inlet flow to the collector, the pressure of the inlet flow to turbine, and the pressure of the inlet flow to the first pump on the design parameters were investigated. The results demonstrated that the only benefit increasing the temperature of the inlet flow to the collector and the pressure of the inlet flow to the first pump is cost reduction. Also, the increment of the pressure of the inlet flow to the turbine increases the exergy efficiency.

1.
W. U.
Rehman
 et al, “
The penetration of renewable and sustainable energy in Asia: A state-of-the-art review on net-metering
,”
IEEE Access
8
,
170364
170388
(
2020
).
2.
I.
Ayub
,
M. S.
Nasir
,
Y.
Liu
,
A.
Munir
,
F.
Yang
, and
Z.
Zhang
, “
Performance improvement of solar bakery unit by integrating with metal hydride based solar thermal energy storage reactor
,”
Renewable Energy
161
,
1011
(
2020
).
3.
X.
Li
 et al, “
Erythritol impregnated within surface-roughened hydrophilic metal foam for medium-temperature solar-thermal energy harvesting
,”
Energy Convers. Manage.
222
,
113241
(
2020
).
4.
F. A.
Boyaghchi
and
M.
Chavoshi
, “
Monthly assessments of exergetic, economic and environmental criteria and optimization of a solar micro-CCHP based on DORC
,”
Sol. Energy
166
,
351
370
(
2018
).
5.
A.
Mahmoudi
,
M.
Fazli
,
M. R.
Morad
, and
E.
Gholamalizadeh
, “
Thermo-hydraulic performance enhancement of nanofluid-based linear solar receiver tubes with forward perforated ring steps and triangular cross section; a numerical investigation
,”
Appl. Therm. Eng.
169
,
114909
(
2020
).
6.
A.
Bahrami
, “
Comments on ‘Analysis of fixed tilt and sun tracking photovoltaic-micro wind based hybrid power systems [ECM 115 (2016) 265-275]
,’ ”
Energy Convers. Manage.
222
,
113286
(
2020
).
7.
A.
Bahrami
and
C.
Okoye
, “
The performance and ranking pattern of PV systems incorporated with solar trackers in the northern hemisphere
,”
Renewable Sustainable Energy Rev.
97
,
138
151
(
2018
).
8.
A.
Minaeian
,
A.
Sedaghat
,
A.
Mostafaeipour
, and
A.
Akbar Alemrajabi
, “
Exploring economy of small communities and households by investing on harnessing wind energy in the province of Sistan-Baluchestan in Iran
,”
Renewable Sustainable Energy Rev.
74
,
835
847
(
2017
).
9.
M.
Fatehi
,
M.
Nili-Ahmadabadi
,
O.
Nematollahi
,
A.
Minaiean
, and
K. C.
Kim
, “
Aerodynamic performance improvement of wind turbine blade by cavity shape optimization
,”
Renewable Energy
132
,
773
785
(
2019
).
10.
A.
Modir
and
N.
Goudarzi
, “
Experimental investigation of Reynolds number and spring stiffness effects on vortex induced vibrations of a rigid circular cylinder
,”
Eur. J. Mech. B
74
,
34
40
(
2019
).
11.
M.
Rezaei
,
K. R.
Khalilpour
, and
M.
Jahangiri
, “
Multi-criteria location identification for wind/solar based hydrogen generation: The case of capital cities of a developing country
,”
Int. J. Hydrogen Energy
45
(
58
),
33151
33168
(
2020
).
12.
M.
Rezaei
,
A.
Mostafaeipour
,
N.
Jafari
,
N.
Naghdi-Khozani
, and
A.
Moftakharzadeh
, “
Wind and solar energy utilization for seawater desalination and hydrogen production in the coastal areas of southern Iran
,”
J. Eng., Des. Technol.
18
,
1951
(
2020
).
13.
A.
Mostafaeipour
,
H.
Rezayat
, and
M.
Rezaei
, “
A thorough investigation of solar-powered hydrogen potential and accurate location planning for big cities: A case study
,”
Int. J. Hydrogen Energy
45
(
56
),
31599
31611
(
2020
).
14.
M.
Ghazvini
,
M.
Sadeghzadeh
,
M. H.
Ahmadi
,
S.
Moosavi
, and
F.
Pourfayaz
, “
Geothermal energy use in hydrogen production: A review
,”
Int. J. Energy Res.
43
(
14
),
7823
7851
(
2019
).
15.
F. A.
Boyaghchi
and
M.
Chavoshi
, “
Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts
,”
Appl. Therm. Eng.
112
,
660
675
(
2017
).
16.
H.
Hamze
,
M.
Akia
, and
F.
Yazdani
, “
Optimization of biodiesel production from the waste cooking oil using response surface methodology
,”
Process Saf. Environ. Prot.
94
,
1
10
(
2015
).
17.
H. H.
Sait
,
J. M.
Martinez-Val
,
R.
Abbas
, and
J.
Munoz-Anton
, “
Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors
,”
Appl. Energy
141
,
175
189
(
2015
).
18.
S. I.
Klychev
,
R. A.
Zakhidov
,
S. A.
Bakhramov
,
R. A.
Khuzhanov
, and
Z. S.
Klychev
, “
Concentrations of the linear Fresnel reflector with the facets orientated to the immovable receiver
,”
Appl. Sol. Energy
46
(
3
),
224
227
(
2010
).
19.
İ.
Dostuçok
,
R.
Selbaş
, and
v. A. Ş.
Şahİn
, “
Experimental investigation of a linear Fresnel collector system
,”
J. Therm. Sci. Technol.
34
,
77
83
(
2014
).
20.
N.
Desai
and
S.
Bandyopadhyay
, “
Integration of parabolic trough and linear Fresnel collectors for optimum design of concentrating solar thermal power plant
,”
Clean Technol. Environ. Policy
17
(
7
),
1945
1961
(
2015
).
21.
P. L.
Singh
,
R. M.
Sarviya
, and
J. L.
Bhagoria
, “
Effect of some parameters on linear Fresnel solar concentrating collectors
,”
J. Environ. Res. Dev.
4
(
2
),
528
534
(
2009
).
22.
M.
Babu
and
A. V.
Arasu
, “
Theoretical performance analysis of linear Fresnel reflector concentrating solar system with vertical absorber
,”
Aust. J. Basic Appl. Sci.
9
(
20
),
473
484
(
2015
).
23.
K.
Craig
,
A.
Rungasamy
, and
J.
Meyer
, “
Receiver optimisation for an etendue conserving compact linear Fresnel
,” in
Third Southern African Solar Energy Conference
(
Skukuza
,
South Africa
,
2015
).
24.
I. F.
Okafor
,
J.
Dirker
, and
J. P.
Meyer
, “
Influence of circumferential solar heat flux distribution on the heat transfer coefficients of linear Fresnel collector absorber tubes
,”
Sol. Energy
107
,
381
397
(
2014
).
25.
D.
Mills
and
G.
Morrison
, “
Compact Linear Fresnel Reflector solar thermal powerplants
,”
Solar Energy
8
(
3
),
263
283
(
2000
).
26.
Y.
Elmaanaoui
and
D.
Saifaoui
, “
An alternative method to optimize mirrors positions in linear Fresnel reflector
,”
Int. J. Renewable Energy Res.
7
(
4
),
1509
1519
(
2017
).
27.
G. S.
Chaitanya Prasad
,
K. S.
Reddy
, and
T.
Sundararajan
, “
Optimization of solar linear Fresnel reflector system with secondary concentrator for uniform flux distribution over absorber tube
,”
Sol. Energy
150
,
1
12
(
2017
).
28.
S.
Balaji
,
K. S.
Reddy
, and
T.
Sundararajan
, “
Optical modelling and performance analysis of a solar LFR receiver system with parabolic and involute secondary reflectors
,”
Appl. Energy
179
,
1138
1151
(
2016
).
29.
E.
Bellos
,
C.
Tzivanidis
, and
A.
Papadopoulos
, “
Secondary concentrator optimization of a linear Fresnel reflector using Bezier polynomial parametrization
,”
Sol. Energy
171
,
716
727
(
2018
).
30.
R.
Abbas
,
A.
Sebastián
,
M. J.
Montes
, and
M.
Valdés
, “
Optical features of linear Fresnel collectors with different secondary reflector technologies
,”
Appl. Energy
232
,
386
397
(
2018
).
31.
C.
Invernizzi
,
P.
Iora
, and
P.
Silva
, “
Bottoming micro-Rankine cycles for micro-gas turbines
,”
Appl. Therm. Eng.
27
(
1
),
100
110
(
2007
).
32.
G.
Xu
,
G.
Song
,
X.
Zhu
,
W.
Gao
,
H.
Li
, and
Y.
Quan
, “
Performance evaluation of a direct vapor generation supercritical ORC system driven by linear Fresnel reflector solar concentrator
,”
Appl. Therm. Eng.
80
,
196
204
(
2015
).
33.
A.
Sohbatloo
and
F.
Boyaghchi
, “
Assessment and optimization of a novel solar driven natural gas liquefaction based on cascade ORC integrated with linear Fresnel collectors
,”
Energy Conversion and Management
162
,
77
89
(
2018
).
34.
F.
Boyaghchi
,
M.
Chavoshi
, and
V.
Sabeti
, “
Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid
,”
Energy
91
,
685
699
(
2015
).
35.
A.
Kumar
,
M.
Sharma
,
P.
Thakur
,
V. K.
Thakur
,
S. S.
Rahatekar
, and
R.
Kumar
, “
A review on exergy analysis of solar parabolic collectors
,”
Sol. Energy
197
,
411
432
(
2020
).
36.
A.
Haghighi
,
M. R.
Pakatchian
,
M. E. H.
Assad
,
V. N.
Duy
, and
M.
Alhuyi Nazari
, “
A review on geothermal Organic Rankine cycles: Modeling and optimization
,”
J. Therm. Anal. Calorim.
(
2020
).
37.
A.
Ahmadi
 et al, “
Applications of geothermal organic Rankine Cycle for electricity production
,”
J. Cleaner Prod.
274
,
122950
(
2020
).
38.
A.
Ahmadi
,
D. H.
Jamali
,
M. A.
Ehyaei
, and
M. E. H.
Assad
, “
Energy, exergy, economic and exergoenvironmental analyses of gas and air bottoming cycles for production of electricity and hydrogen with gas reformer
,”
J. Cleaner Prod.
259
,
120915
(
2020
).
39.
M. A.
Ehyaei
,
A.
Ahmadi
,
M. E.
Haj Assad
, and
M. A.
Rosen
, “
Investigation of an integrated system combining an Organic Rankine Cycle and absorption chiller driven by geothermal energy: Energy, exergy, and economic analyses and optimization
,”
J. Cleaner Prod.
258
,
120780
(
2020
).
40.
M.
Marefati
,
M.
Mehrpooya
, and
S. A.
Mousavi
, “
Introducing an integrated SOFC, linear Fresnel solar field, Stirling engine and steam turbine combined cooling, heating and power process
,”
Int. J. Hydrogen Energy
44
(
57
),
30256
30279
(
2019
).
41.
M.
Mehrpooya
and
M.
Karimi
, “
Hydrogen production using solid oxide electrolyzer integrated with linear Fresnel collector, Rankine cycle and thermochemical energy storage tank
,”
Energy Convers. Manage.
224
,
113359
(
2020
).
42.
M.
Ghodbane
,
E.
Bellos
,
Z.
Said
,
B.
Boumeddane
,
A. K.
Hussein
, and
L.
Kolsi
, “
Evaluating energy efficiency and economic effect of heat transfer in copper tube for small solar linear Fresnel reflector
,”
J. Therm. Anal. Calorim.
143
,
4197
(
2021
).
43.
S. A.
Makkeh
,
A.
Ahmadi
,
F.
Esmaeilion
, and
M. A.
Ehyaei
, “
Energy, exergy and exergoeconomic optimization of a cogeneration system integrated with parabolic trough collector-wind turbine with desalination
,”
J. Cleaner Prod.
273
,
123122
(
2020
).
44.
A.
Minaeian
,
A.
Alemrajabi
,
M.
Chavoshi
,
A.
Mostafaeipour
, and
Z.
Seifi
, “
Effect of secondary reflector on solar flux intensity and uniformity of a Fresnel concentrator
,”
J. Renewable Sustainable Energy
12
(
3
),
033703
(
2020
).
45.
S.
Qazi
, “
Solar thermal electricity and solar insolation
,” in
Standalone Photovoltaic (PV) Systems for Disaster Relief and Remote Areas
, edited by
S.
Qazi
(
Elsevier
,
2017
), Chap. 7, pp.
203
237
.
46.
Y.
Qiu
,
Y.-L.
He
,
P.
Li
, and
B.-C.
Du
, “
A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver
,”
Appl. Energy
185
,
589
603
(
2017
).
47.
M.
Fan
 et al, “
An optimized Monte Carlo ray tracing optical simulation model and its applications to line-focus concentrating solar collectors
,”
Appl. Energy
225
,
769
781
(
2018
).
48.
Z. D.
Cheng
,
Y. L.
He
,
F. Q.
Cui
,
B. C.
Du
,
Z. J.
Zheng
, and
Y.
Xu
, “
Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model
,”
Appl. Energy
115
,
559
572
(
2014
).
49.
J. R.
Howell
,
R.
Siegel
, and
M. P.
Mengüç
,
Thermal Radiation Heat Transfer
(
CRC Press
,
Boca Raton, FL
,
2011
) (in English).
50.
V.
Siva Reddy
,
S. C.
Kaushik
, and
S. K.
Tyagi
, “
Exergetic analysis of solar concentrator aided natural gas fired combined cycle power plant
,”
Renewable Energy
39
(
1
),
114
125
(
2012
).
51.
J. A.
Duffie
and
W. A.
Beckman
,
Solar Engineering of Thermal Processes
(
Wiley
,
New York
,
1991
).
52.
Y. A.
Çengel
and
M. A.
Boles
,
Thermodynamics: An Engineering Approach
(McGraw-Hill Education, New York,
2015
) (in English).
53.
A.
Bejan
,
G.
Tsatsaronis
, and
M.
Moran
,
Thermal Design and Optimization
(Wiley, New York,
1996
).
54.
H.
Mokhtari
,
A.
Esmaieli
, and
H.
Hajabdollahi
, “
Thermo‐economic analysis and multiobjective optimization of dual pressure combined cycle power plant with supplementary firing
,”
Heat Transfer—Asian Res.
45
,
59
84
(
2014
).
55.
P.
Ahmadi
,
I.
Dincer
, and
M. A.
Rosen
, “
Multi-objective optimization of a novel solar-based multigeneration energy system
,”
Sol. Energy
108
,
576
591
(
2014
).
56.
W.
Van Gool
, “
Energy policy: Fairy tales and factualities
,” in
Innovation and Technology—Strategies and Policies
, edited by
O. D. D.
Soares
,
A. M.
da Cruz
,
G. C.
Pereira
,
I. M. R. T.
Soares
, and
A. J. P. S.
Reis
(
Springer
,
Dordrecht, The Netherlands
,
1997
), pp.
93
105
.
57.
L.
Garousi Farshi
,
S. M. S.
Mahmoudi
, and
M. A.
Rosen
, “
Exergoeconomic comparison of double effect and combined ejector-double effect absorption refrigeration systems
,”
Appl. Energy
103
,
700
711
(
2013
).
You do not currently have access to this content.