Cu2ZnSn(Sx, Se1−x)4 (CZTSSe) material has attracted more and more researchers' attention due to its low cost, environmental protection, high absorption coefficient, and adjustable bandgap. The classic structure of CZTSSe solar cell is Al: ZnO (AZO)/i-ZnO/CdS/CZTSSe, so it is very important to find a suitable buffer layer material to replace the toxic cadmium (Cd). Therefore, the performance of solar cells with different buffer layers is compared. The buffer layer is replaced by the indirect bandgap n-In2S3, which has high stability and light transmittance. And in this work, spectroscopic ellipsometry is used to measure the absorption coefficient spectrum of the absorber layer CZTSSe with different sulfur-to-selenium ratio, and wxAMPS numerical simulation software is used to simulate various material properties and draw conclusions. When X = 0.4, the performance of the CZTSSe TFSC reaches the optimal value.

1.
M.
Nakamura
,
K.
Yamaguchi
,
Y.
Kimoto
,
Y.
Yasaki
, and
H.
Sugimoto
, “
Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%
,”
IEEE J. Photovoltaics
9
,
1863
(
2019
).
2.
M. A.
Green
,
E. D.
Dunlop
,
J.
Hohl-Ebinger
,
M.
Yoshita
,
N.
Kopidakis
, and
X.
Hao
, “
Solar cell efficiency tables (version 56)
,”
Prog. Photovoltaics
28
,
629
(
2020
).
3.
G. M.
Gil
,
S. S.
Wook
,
M. P.
Suryawanshi
,
U. V.
Ghorpade
,
S.
Zhaoning
,
J. J.
Sung
,
Y. J.
Ho
,
C.
Hyeonsik
,
Y.
Yanfa
, and
K. J.
Hyeok
, “
Band tail engineering in kesterite Cu2ZnSn(S,Se)4 thin-film solar cells with 11.8% efficiency
,”
J. Phys. Chem. Lett.
9
,
4555
(
2018
).
4.
K.-J.
Yang
,
D.-H.
Son
,
S.-J.
Sung
,
J.-H.
Sim
,
Y.-I.
Kim
,
S.-N.
Park
,
D.-H.
Jeon
,
J.
Sik Kim
,
D.-K.
Hwang
,
C.-W.
Jeon
,
D.
Nam
,
H.
Cheong
,
J.-K.
Kang
, and
D.-H.
Kim
, “
A band-gap-graded CZTSSe solar cell with 12.3% efficiency
,”
J. Mater. Chem. A
4
,
10151
(
2016
).
5.
A.
Aissat
,
H.
Arbouz
, and
J. P.
Vilcot
, “
Modeling and optimization of a superstrate solar cell based on Cu2ZnSn(SxSe1-x)4/ZnS structure
,”
J. Energy Syst.
1
,
65
(
2017
).
6.
L.
Et-taya
,
T.
Ouslimane
, and
A.
Benami
, “
Numerical analysis of earth-abundant Cu2ZnSn(SxSe1-x)4 solar cells based on spectroscopic ellipsometry results by using SCAPS-1D
,”
Sol. Energy
201
,
827
(
2020
).
7.
S. E.
Maklavani
and
S.
Mohammadnejad
, “
Reduction of interface recombination current for higher performance of p+-CZTSxSe(1-x)/p-CZTS/n-CdS thin-film solar cells using kesterite intermediate layers
,”
Sol. Energy
204
,
489
(
2020
).
8.
N.
Naghavi
,
D.
Abou-Ras
,
N.
Allsop
,
N.
Barreau
, and
T.
Törndahl
, “
Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)(2) based thin film photovoltaics: Present status and current developments
,”
Prog. Photovoltaics
18
,
411
(
2010
).
9.
D. M.
Bishop
,
B.
Mccandless
,
T.
Gershon
,
M. A.
Lloyd
,
R.
Haight
, and
R.
Birkmire
, “
Modification of defects and potential fluctuations in slow-cooled and quenched Cu2ZnSnSe4 single crystals
,”
J. Appl. Phys.
121
,
065704
(
2017
).
10.
G.
Rey
,
G.
Larramona
,
S.
Bourdais
,
C.
Chone
,
B.
Delatouche
, and
A.
Jacob
, “
On the origin of band-tails in kesterite
,”
Sol. Energy Mater. Sol. Cells
179
,
142
(
2018
).
11.
S.
Sebastian
,
T. P.
Dhakal
,
G. S.
Gudavalli
,
P. P.
Rajbhandari
,
C.
DeHart
,
L. L.
Baranowski
, and
A.
Zakutayev
, “
Combinatorial reactive sputtering of In2S3 as an alternative contact layer for thin film solar cells
,”
ACS Appl. Mater. Interfaces
8
,
14004
(
2016
).
12.
Z.
Zheng
,
J.
Yu
,
S.
Cheng
,
Y.
Lai
,
Q.
Zheng
, and
D.
Pan
, “
Investigation of structural, optical and electrical properties of Cu doped β-In2S3 thin films
,”
J. Mater. Sci.: Mater. Electron.
27
,
5810
(
2016
).
13.
S.
Campbell
,
Y.
Qu
,
J.
Gibbon
,
H. J.
Edwards
, and
G.
Zoppi
, “
Defect limitations in Cu2ZnSn(S,Se)4 solar cells utilizing an In2S3 buffer layer
,”
J. Appl. Phys.
127
,
205305
(
2020
).
14.
S.
Mohammad
,
M. N.
Tousif
,
A. A.
Ferdous
,
M. A.
Hoque
, and
M. W.
Rahman
, “
Numerical analysis of CZTS solar cell with In2S3 buffer layer: A study of a CZTS based thin film solar cell, concerning the effects of several parameters on its electrical performance
,”
2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC), Singapore, 23-26 July 2017
(
IEEE
,
2017
).
15.
M. A.
Ashraf
and
I.
Alam
, “
Numerical simulation of CIGS, CISSe and CZTS-based solar cells with In2S3 as buffer layer and Au as back contact using SCAPS 1D
,”
Eng. Res. Express
2
(
17
),
035015
(
2020
).
16.
S.
Tripathi
,
Sadanand
,
P.
Lohia
, and
D. K.
Dwivedi
, “
Contribution to sustainable and environmental friendly non-toxic CZTS solar cell with an innovative hybrid buffer layer
,”
Sol. Energy
204
,
748
(
2020
).
17.
C.
Doroody
,
K. S.
Rahman
,
H. N.
Rosly
,
N.
Harif
, and
N.
Amin
, “
Impact of high resistivity transparent (HRT) layer in cadmium telluride solar cells from numerical simulation
,”
J. Renewable Sustainable Energy
12
,
023702
(
2020
).
18.
S.
Yasar
,
S.
Kahraman
,
S.
Cetinkaya
,
Ş.
Apaydin
,
İ.
Bilican
, and
İ.
Uluer
, “
Numerical thickness optimization study of CIGS based solar cells with wxAMPS
,”
Optik
127
,
8827
(
2016
).
[PubMed]
19.
B. M.
Omer
, “
Effect of valence band tail width on the open circuit voltage of P3HT:PCBM bulk heterojunction solar cell: AMPS-1D simulation study
,”
Chin. Phys. Lett.
32
,
088801
(
2015
).
20.
H.
Fujiwara
and
R. W.
Collins
,
Spectroscopic Ellipsometry for Photovoltaics
, Volume 2: Applications and Optical Data of Solar Cell Materials, Springer Series in Optical Sciences (
Springer International Publishing
,
2018
), p.
214
.
21.
A. E.
Benzetta
,
M.
Abderrezek
, and
M. E.
Djeghlal
, “
Comparative study on Cu2ZnSn(S,Se)4 based thin film solar cell performances by adding various back surface field (BSF) layers
,”
Chin. J. Phys.
63
,
231
(
2020
).
22.
Z. W.
Jiang
,
S. S.
Gao
,
S. Y.
Wang
,
D. X.
Wang
, and
Y.
Zhang
, “
Insight into band alignment of Zn(O,S)/CZTSe solar cell by simulation
,”
Chin. Phys. B
28
,
048801
(
2019
).
23.
S.
Çetinkaya
, “
Study of electrical effect of transition-metal dichalcogenide-MoS2 layer on the performance characteristic of Cu2ZnSnS4 based solar cells using wxAMPS
,”
Optik
181
,
627
(
2019
).
24.
A.
Bouarissa
,
A.
Gueddim
,
N.
Bouarissa
, and
H.
Maghraoui-Meherezi
, “
Modeling of ZnO/MoS2/CZTS photovoltaic solar cell through window, buffer and absorber layers optimization
,”
Mater. Sci. Eng.: B
263
,
>114816
(
2021
).
25.
Y. H.
Khattak
,
B.
Faisal
,
T.
Hanae
,
S.
Marí
, and
K.
Kaim
, “
Modelling of novel-structured copper barium tin sulphide thin film solar cells
,”
Bull. Mater. Sci.
42
,
231
(
2019
).
26.
S.
Tripathi
,
B.
Kumar
, and
D. K.
Dwivedi
, “
Numerical simulation of non-toxic In2S3/SnS2 buffer layer to enhance CZTS solar cells efficiency by optimizing device parameters
,”
Optik
227
,
166087
(
2020
).
27.
H. Y.
Sun
,
P. H.
Li
,
Y. M.
Xue
,
Z. X.
Qiao
, and
S.
Liu
, “
Effect of MoSe2 on the performance of CIGS solar cells
,”
Optoelectron. Lett.
15
,
428
(
2019
).
28.
S.
Chen
,
A.
Walsh
,
J. H.
Yang
,
X. G.
Gong
,
L.
Sun
,
P. X.
Yang
,
J. H.
Chu
, and
S. H.
Wei
, “
Compositional dependence of structural and electronic properties of Cu(2)ZnSn(S,Se)(4) alloys for thin film solar cells
,”
Phys. Rev. B
83
,
125201
(
2011
).
29.
S.
Siebentritt
, “
Alternative buffers for chalcopyrite solar cells
,”
Sol. Energy
77
,
767
(
2004
).
30.
E.
Mellikov
,
M.
Altosaar
,
M.
Kauk‐Kuusik
,
K.
Timmo
,
D.
Meissner
,
M.
Grossberg
,
J.
Krustok
, and
O.
Volobujeva
, “
Growth of CZTS-based monograins and their application to membrane solar cells
,” in
Copper Zinc Tin Sulfide-Based Thin‐Film Solar Cells
(
John Wiley & Sons Ltd
,
2014
), p.
289
309
.
31.
A.
Kumar
and
A. D.
Thakur
, “
Comprehensive loss modeling in Cu2ZnSnS4 solar cells
,”
Curr. Appl. Phys.
19
,
1111
(
2019
).
32.
M.
Patel
and
A.
Ray
, “
Enhancement of output performance of Cu2ZnSnS4 thin film solar cells—A numerical simulation approach and comparison to experiments
,”
Phys. B
407
,
4391
(
2012
).
33.
A. A. B.
Baloch
,
M. I.
Hossain
,
N.
Tabet
, and
F. H.
Alharbi
, “
Practical efficiency limit of methylammonium lead iodide perovskite (CH3NH3PbI3) solar cells
,”
J. Phys. Chem. Lett.
9
,
426
(
2018
).
34.
S. H.
Demtsu
and
J. R.
Sites
, “
Effect of back-contact barrier on thin-film CdTe solar cells
,”
Thin Solid Films
510
,
320
(
2006
).
35.
M.
Topi
,
F.
Smole
, and
J.
Furlan
, “
Examination of blocking current–voltage behavior through defect chalcopyrite layer in ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell
,”
Sol. Energy Mater. Sol. Cells
49
,
311
(
1997
).
36.
T. K. T.
Oki Gunawan
and
D. B.
Mitzi
, “
Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells
,”
Appl. Phys. Lett.
97
,
233506
(
2010
).
37.
D. B.
Mitzi
,
O.
Gunawan
,
T. K.
Todorov
,
K.
Wang
, and
S.
Guha
, “
The path towards a high-performance solution-processed kesterite solar cell
,”
Sol. Energy Mater. Sol. Cells
95
,
1421
(
2011
).
38.
F. Z.
Fangzhou Zhou
,
X.
Liu
,
F.
Liu
,
N.
Song
,
C.
Yan
,
A.
Pu
,
J.
Park
,
K.
Sun
, and
X.
Hao
, “
Improvement of Jsc in a Cu2ZnSnS4 solar cell using a thin carbon intermediate layer at the Cu2ZnSnS4/Mo interface
,”
ACS Appl. Mater. Interfaces
7
,
22868
(
2015
).
39.
J.
Kim
,
H.
Hiroi
,
T. K.
Todorov
,
O.
Gunawan
,
M.
Kuwahara
,
T.
Gokmen
,
D.
Nair
,
M.
Hopstaken
,
B.
Shin
,
Y. S.
Lee
,
W.
Wang
,
H.
Sugimoto
, and
D. B.
Mitzi
, “
High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter
,”
Adv. Mater.
26
,
7427
(
2014
).
40.
M. S. I.
Rafee Mahbub
,
F.
Anwar
,
S. S.
Satter
, and
S. M.
Ullah
, “
Simulation of CZTS thin film solar cell for different buffer layers for high efficiency performance
,”
South Asian J. Eng. Technol.
2
,
1
(
2016
).
41.
Y. H.
Khattak
,
F.
Baig
,
S.
Ullah
,
B.
Marí
,
S.
Beg
, and
H.
Ullah
, “
Enhancement of the conversion efficiency of thin film kesterite solar cell
,”
J. Renewable Sustainable Energy
10
,
033501
(
2018
).
42.
M.
Minbashi
,
M. K.
Omrani
,
N.
Memarian
, and
D. H.
Kim
, “
Comparison of theoretical and experimental results for band-gap-graded CZTSSe solar cell
,”
Curr. Appl. Phys.
17
,
1238
(
2017
).
43.
D. K.
Hwang
,
B. S.
Ko
,
D. H.
Jeon
,
J. K.
Kang
,
S. J.
Sung
,
K. J.
Yang
,
D.
Nam
,
S.
Cho
,
H.
Cheong
, and
D. H.
Kim
, “
Single-step sulfo-selenization method for achieving low open circuit voltage deficit with band gap front-graded Cu2ZnSn(S,Se)4 thin films
,”
Sol. Energy Mater. Sol. Cells
161
,
162
(
2017
).
You do not currently have access to this content.