The sustainable supply of food, energy, and water resources under the additional pressures caused by climate change is a global grand challenge. In Pakistan and many other developing countries, population growth and escalating demands for clean energy, food, and water also impose mounting pressure on agricultural land, necessitating the rapid development of innovative, holistic, and climate-compatible solutions. Here, we use a self-consistent electrical–optical–thermal model to explore the potential of east/west (E/W) vertical bifacial photovoltaic (PV) farms for state-of-the-art agrivoltaic (AV) systems—an innovative production system that enables solar energy generation over crops—an approach that can solve key obstacles in solar energy growth for Pakistan and the world whilst ensuring food–water–climate security. We compare the performance of E/W vertical bifacial PV farms with north/south (N/S) tilted bifacial PV farms for PV energy production and ground irradiance available for crops. We show that optimally designed E/W vertical bifacial PV farms provide spatial homogeneity for crop light. We further explore the effect of soiling on PV energy yield and show that due to their inherent resilience to soiling losses, E/W vertical PV farms could reduce the water budget and could be the potential candidates to be mounted in AV systems particularly in the regions having scarce water supply.

1.
United Nations Department of Economic and Social Affairs Population Division
(UNDESA
), “
World population prospects: The 2017 revision, key findings and advance tables
,” Paper No. ESA/P/WP/248 (
2017
).
2.
See
IEA
, https://www.iea.org/reports/renewables-2020 for “
Renewables 2020 Analysis and forecast to 2025
,” 2020.
4.
Q.
Hang
,
Z.
Jun
,
Y.
Xiao
, and
C.
Junkui
, “
Prospect of concentrating solar power in China—The sustainable future
,”
Renewable Sustainable Energy Rev.
12
,
2505
2514
(
2008
).
5.
V.
Fthenakis
,
J. E.
Mason
, and
K.
Zweibel
, “
The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US
,”
Energy Policy
37
,
387
399
(
2009
).
6.
V.
Fthenakis
and
H. C.
Kim
, “
Land use and electricity generation: A life-cycle analysis
,”
Renewable Sustainable Energy Rev.
13
,
1465
1474
(
2009
).
7.
A.
Goetzberger
and
A.
Zastrow
, “
On the coexistence of solar-energy conversion and plant cultivation
,”
Int. J. Sol. Energy
1
,
55
69
(
1982
).
8.
C.
Dupraz
,
H.
Marrou
,
G.
Talbot
,
L.
Dufour
,
A.
Nogier
, and
Y.
Ferard
, “
Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes
,”
Renewable Energy
36
,
2725
2732
(
2011
).
9.
C.
Dupraz
,
G.
Talbot
,
H.
Marrou
,
J.
Wery
,
S.
Roux
,
F.
Liagre
 et al, “
To mix or not to mix: Evidences for the unexpected high productivity of new complex agrivoltaic and agroforestry systems
,”
in Proceedings of the 5th World Congress of Conservation Agriculture: Resilient Food Systems for a Changing World
(
2011
).
10.
Y.
Elamri
,
B.
Cheviron
,
J.-M.
Lopez
,
C.
Dejean
, and
G.
Belaud
, “
Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces
,”
Agric. Water Manage.
208
,
440
453
(
2018
).
11.
G. A.
Barron-Gafford
,
M. A.
Pavao-Zuckerman
,
R. L.
Minor
,
L. F.
Sutter
,
I.
Barnett-Moreno
,
D. T.
Blackett
,
M.
Thompson
,
K.
Dimond
,
A. K.
Gerlak
,
G. P.
Nabhan
 et al, “
Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands
,”
Nat. Sustainability
2
,
848
855
(
2019
).
12.
D.
Majumdar
and
M. J.
Pasqualetti
, “
Dual use of agricultural land: Introducing ‘agrivoltaics’ in Phoenix Metropolitan Statistical area, USA
,”
Landscape Urban Plann.
170
,
150
168
(
2018
).
13.
H.
Imran
,
M. H.
Riaz
, and
N. Z.
Butt
, “
Optimization of single-axis tracking of photovoltaic modules for agrivoltaic systems
,” in
2020 47th IEEE Photovoltaic Specialists Conference (PVSC)
(
IEEE
,
2020
), pp.
1353
1356
.
14.
B.
Valle
,
T.
Simonneau
,
F.
Sourd
,
P.
Pechier
,
P.
Hamard
,
T.
Frisson
,
M.
Ryckewaert
, and
A.
Christophe
, “
Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops
,”
Appl. Energy
206
,
1495
1507
(
2017
).
15.
H.
Marrou
,
L.
Guilioni
,
L.
Dufour
,
C.
Dupraz
, and
J.
Wéry
, “
Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels?
,”
Agric. Meteorol.
177
,
117
132
(
2013
).
16.
T.
Sekiyama
and
A.
Nagashima
, “
Solar sharing for both food and clean energy production: Performance of agrivoltaic systems for corn, a typical shade-intolerant crop
,”
Environments
6
,
65
(
2019
).
17.
E.
Hassanpour Adeh
,
J. S.
Selker
, and
C. W.
Higgins
, “
Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency
,”
PLoS One
13
,
e0203256
(
2018
).
18.
M. H.
Riaz
,
H.
Imran
, and
N. Z.
Butt
, “
Optimization of PV array density for fixed tilt bifacial solar panels for efficient agrivoltaic systems
,” in
2020 47th IEEE Photovoltaic Specialists Conference (PVSC)
(
IEEE
,
2020
), pp.
1349
1352
.
19.
M. H.
Riaz
,
H.
Imran
,
R.
Younas
,
M. A.
Alam
, and
N. Z.
Butt
, “
Module technology for agrivoltaics: Vertical bifacial versus tilted monofacial farms
,”
IEEE J. Photovoltaics
11
,
469
477
(
2021
).
20.
See
PV Performance Modeling Collaborative
, https://pvpmc.sandia.gov/applications/pv_lib-toolbox/ for “
PV_LIB Toolbox
,”
2016
; accessed 19 January 2021.
21.
I.
Reda
and
A.
Andreas
, “
Solar position algorithm for solar radiation applications
,”
Sol. Energy
76
,
577
589
(
2004
).
22.
B.
Haurwitz
, “
Insolation in relation to cloudiness and cloud density
,”
J. Meteorol.
2
,
154
166
(
1945
).
23.
B.
Haurwitz
, “
Isolation in relation to cloud type
,”
J. Meteorol.
5
,
110
113
(
1948
).
24.
See https://power.larc.nasa.gov/data-access-viewer/ for “
The Power Project: NASA prediction of worldwide energy resources
”; accessed 19 January 2021.
25.
J.
Orgill
and
K.
Hollands
, “
Correlation equation for hourly diffuse radiation on a horizontal surface
,”
Sol. Energy
19
,
357
359
(
1977
).
26.
R.
Guerrero-Lemus
,
R.
Vega
,
T.
Kim
,
A.
Kimm
, and
L.
Shephard
, “
Bifacial solar photovoltaics—A technology review
,”
Renewable Sustainable Energy Rev.
60
,
1533
1549
(
2016
).
27.
A.
Ullah
,
H.
Imran
,
Z.
Maqsood
, and
N. Z.
Butt
, “
Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan
,”
Renewable Energy
139
,
830
843
(
2019
).
28.
D. L.
King
,
J. A.
Kratochvil
, and
W. E.
Boyson
,
Photovoltaic Array Performance Model
(
United States Department of Energy
,
2004
).
29.
See
C.
Honsberg
and
S.
Bowden
, https://www.pveducation.org/pvcdrom/solar-cell-operation/effect-of-temperature/ for
“Effect of temperature”
; accessed 19 January 2021.
30.
A.
Ullah
,
A.
Amin
,
T.
Haider
,
M.
Saleem
, and
N. Z.
Butt
, “
Investigation of soiling effects, dust chemistry and optimum cleaning schedule for PV modules in Lahore, Pakistan
,”
Renewable Energy
150
,
456
468
(
2020
).
31.
H.
Imran
,
Z.
Maqsood
,
A.
Ullah
, and
N. Z.
Butt
, “
Effective prediction of transmission of solar irradiance through dusty solar panels using atmospheric aerosol data for Lahore, Pakistan
,” in
2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)
(
IEEE
,
2019
), pp.
2889
2893
.
You do not currently have access to this content.