To better suit the bandgap of solar cell, we proposed a novel theoretical model of solar thermophotovoltaic system, which consists of a concentrator, a surface-textured absorber, an emitter, a photovoltaic cell, and a downconversion layer. Two configurations of rear and front down converters are proposed to enhance the performance of the solar thermophotovoltaic system. The corresponding expressions of particle and heat fluxes are derived. Based on balance equations of particle and energy, the temperatures of emitter and solar cell, and the voltages of down converter are determined. In addition, the influences of solar concentration ratio, geometrical factor, and refractive indexes of emitter and solar cell are considered. Moreover, the operating voltage of solar cell, the areas of emitter and solar cell, and the bandgap of solar cell are optimized at the maximum efficiency condition. The results show that the existence of down converter can efficiently enhance the performance of the solar thermophotovoltaic system, and the proposed configurations can provide theoretical guidance for efficient solar energy harvesting.

1.
S.
Asahi
,
H.
Teranishi
,
K.
Kusaki
,
T.
Kaizu
, and
T.
Kita
, “
Two-step photon up-conversion solar cells
,”
Nat. Commun.
8
,
14962
(
2017
).
2.
Q.
Ni
,
R.
McBurney
,
H.
Alshehri
, and
L.
Wang
, “
Theoretical analysis of solar thermophotovoltaic energy conversion with selective metafilm and cavity reflector
,”
Sol. Energy
191
,
623
628
(
2019
).
3.
R.
Bhatt
and
M.
Gupta
, “
Design and validation of a high-efficiency planar solar thermophotovoltaic system using a spectrally selective emitter
,”
Opt. Express
28
,
21869
21890
(
2020
).
4.
M.
Chen
,
H.
Yan
,
P.
Zhou
, and
X.
Chen
, “
Performance analysis of solar thermophotovoltaic system with selective absorber/emitter
,”
J. Quant. Spectrosc. Radiat. Transfer
253
,
107163
(
2020
).
5.
Q.
Dong
,
T.
Liao
,
Z.
Yang
,
X.
Chen
, and
J.
Chen
, “
Performance characteristics and parametric choices of a solar thermophotovoltaic cell at the maximum efficiency
,”
Energy Convers. Manage.
136
,
44
49
(
2017
).
6.
D. M.
Bierman
,
A.
Lenert
,
W. R.
Chan
,
B.
Bhatia
,
I.
Celanović
,
M.
Soljačić
, and
E. N.
Wang
, “
Enhanced photovoltaic energy conversion using thermally based spectral shaping
,”
Nat. Energy
1
,
16068
(
2016
).
7.
Y.
Wang
,
L.
Zhou
,
Y.
Zhang
,
J.
Yu
,
B.
Huang
,
Y.
Wang
,
Y.
Lai
,
S.
Zhu
, and
J.
Zhu
, “
Hybrid solar absorber–emitter by coherence-enhanced absorption for improved solar thermophotovoltaic conversion
,”
Adv. Opt. Mater.
6
,
1800813
(
2018
).
8.
M.
Shimizu
,
A.
Kohiyama
, and
H.
Yugami
, “
High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter
,”
J. Photonics Energy
5
,
053099
(
2015
).
9.
E.
Sakr
and
P.
Bermel
, “
Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters
,”
Opt. Express
25
,
A880
A895
(
2017
).
10.
A.
Datas
and
C.
Algora
, “
Analytical model of solar thermophotovoltaic systems with cylindrical symmetry: Ray tracing approach
,”
Prog. Photovoltaics
17
,
526
541
(
2009
).
11.
C.
Zhang
,
L.
Tang
,
Y.
Liu
,
Z.
Liu
,
W.
Liu
, and
K.
Qiu
, “
A novel thermophotovoltaic optical cavity for improved irradiance uniformity and system performance
,”
Energy
195
,
116962
(
2020
).
12.
J.
Day
,
S.
Senthilarasu
, and
T. K.
Mallick
, “
Improving spectral modification for applications in solar cells: A review
,”
Renewable Energy
132
,
186
205
(
2019
).
13.
T.
Trupke
,
A.
Shalav
,
B. S.
Richards
,
P.
Wurfel
, and
M. A.
Green
, “
Efficiency enhancement of solar cells by luminescent up-conversion of sunlight
,”
Sol. Energy Mater. Sol. Cells
90
,
3327
3338
(
2006
).
14.
T.
Trupke
,
M. A.
Green
, and
P.
Würfel
, “
Improving solar cell efficiencies by up-conversion of sub-band-gap light
,”
J. Appl. Phys.
92
,
4117
4122
(
2002
).
15.
T.
Trupke
,
M. A.
Green
, and
P.
Würfel
, “
Improving solar cell efficiencies by down-conversion of high-energy photons
,”
J. Appl. Phys.
92
,
1668
1674
(
2002
).
16.
V.
Badescu
,
A. D.
Vos
,
A. M.
Badescu
, and
A.
Szymanska
, “
Improved model for solar cells with down-conversion and down-shifting of high-energy photons
,”
J. Phys. D: Appl. Phys.
40
,
341
352
(
2007
).
17.
V.
Badescu
, “
An extended model for upconversion in solar cells
,”
J. Appl. Phys.
104
,
113120
(
2008
).
18.
V.
Badescu
and
A. M.
Badescu
, “
Improved model for solar cells with up-conversion of low-energy photons
,”
Renewable Energy
34
,
1538
1544
(
2009
).
19.
V.
Badescu
and
A. D.
Vos
, “
Influence of some design parameters on the efficiency of solar cells with down-conversion and down shifting of high-energy photons
,”
J. Appl. Phys.
102
,
073102
(
2007
).
20.
A.
De Vos
,
A.
Szymanska
, and
V.
Badescu
, “
Modelling of solar cells with down-conversion of high energy photons, anti-reflection coatings and light trapping
,”
Energy Convers. Manage.
50
,
328
336
(
2009
).
21.
C. P.
Thomas
,
A. B.
Wedding
, and
S. O.
Martin
, “
Theoretical enhancement of solar cell efficiency by the application of an ideal ‘down-shifting’ thin film
,”
Sol. Energy Mater. Sol. Cells
98
,
455
464
(
2012
).
22.
Z.
Hosseini
,
N.
Taghavinia
, and
E.
Wei-Guang Diau
, “
Luminescent spectral conversion to improve the performance of dye-sensitized solar cells
,”
ChemPhysChem
18
,
3292
3308
(
2017
).
23.
M. A.
Green
and
S. P.
Bremner
, “
Energy conversion approaches and materials for high-efficiency photovoltaics
,”
Nat. Mater.
16
,
23
34
(
2017
).
24.
M. B.
de la Mora
,
O.
Amelines-Sarria
,
B. M.
Monroy
,
C. D.
Hernández-Pérez
, and
J. E.
Lugo
, “
Materials for downconversion in solar cells: Perspectives and challenges
,”
Sol. Energy Mater. Sol. Cells
165
,
59
71
(
2017
).
25.
R. I.
Rabady
, “
Optimized spectral splitting in thermo-photovoltaic system for maximum conversion efficiency
,”
Energy
119
,
852
859
(
2017
).
26.
T.
Liao
,
Z.
Yang
,
W.
Peng
,
X.
Chen
, and
J.
Chen
, “
Parametric characteristics and optimum criteria of a near-field solar thermophotovoltaic system at the maximum efficiency
,”
Energy Convers. Manage.
152
,
214
220
(
2017
).
27.
B.
Wernsman
,
R. R.
Siergiej
,
S. D.
Link
,
R. G.
Mahorter
,
M. N.
Palmisiano
,
R. J.
Wehrer
,
R. W.
Schultz
,
G. P.
Schmuck
,
R. L.
Messham
,
S.
Murray
,
C. S.
Murray
,
F.
Newman
,
D.
Taylor
,
D. M.
DePoy
, and
T.
Rahmlow
, “
Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control
,”
IEEE Trans. Electron Devices
51
,
512
515
(
2004
).
28.
D. M.
Trucchi
,
A.
Bellucci
,
M.
Girolami
,
P.
Calvani
,
E.
Cappelli
,
S.
Orlando
,
R.
Polini
,
L.
Silvestroni
,
D.
Sciti
, and
A.
Kribus
, “
Solar thermionic-thermoelectric generator (ST2G): Concept, materials engineering, and prototype demonstration
,”
Adv. Energy Mater.
8
,
1802310
(
2018
).
29.
H.
Wang
,
J.-Y.
Chang
,
Y.
Yang
, and
L.
Wang
, “
Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters
,”
Int. J. Heat Mass Transfer
98
,
788
798
(
2016
).
30.
K.
Chen
,
P.
Santhanam
,
S.
Sandhu
,
L.
Zhu
, and
S.
Fan
, “
Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer
,”
Phys. Rev. B
91
,
134301
(
2015
).
You do not currently have access to this content.