We experimentally explored the effect of a series of low-level-jet (LLJ) velocity profiles on the energy entrainment of a single and a pair of counter-rotating Giromill–Darrieus vertical-axis wind turbines (VAWTs) models under two types of rotations. Planar particle image velocimetry (PIV) was used to obtain the mean flow and turbulence statistics in the wake of the model wind turbines. Incoming LLJ profiles had peaks coincident with the turbines midspan and top tip; complementary flow characterization with a canonic turbulent boundary layer is also included for comparison. Results show that the positive shear region of the LLJ velocity profiles increased the wake asymmetry due to higher vertical velocity gradients. The positive shear of the LLJ contributed to the enhancement of energy entrainment in the wake compared with a standard turbulent boundary layer profile by increasing the mean kinetic energy advection into the wake in the single and a pair of counter-rotating VAWTs. Comparatively, high vertical velocity gradients may be responsible for this phenomenon; it promoted stronger cross-flow and counter-rotating vortices in the wake.

1.
L.
Castillo
,
W.
Gutierrez
, and
J.
Gore
, https://www.scientificamerican.com/article/renewable-energy-saves-water-and-createsjobs for “
Renewable energy saves water and creates jobs
” (
2018
).
2.
S.
Emeis
,
Surface-Based Remote Sensing of the Atmospheric Boundary Layer
, 1st ed. (
Springer Science & Business Media
,
2010
).
3.
N. D.
Kelley
, “
Turbulence-turbine interaction: The basis for the development of the TurbSim stochastic simulator
,”
Report No. NREL/TP-5000-52353 [
National Renewable Energy Laboratory (NREL)
,
Golden, CO
,
2011
].
4.
E. N.
Smith
,
J. G.
Gebauer
,
P. M.
Klein
,
E.
Fedorovich
, and
J. A.
Gibbs
, “
The great plains low-level jet during pecan: Observed and simulated characteristics
,”
Mon. Weather Rev.
147
,
1845
1869
(
2019
).
5.
M. I.
Oliveira
,
E. L.
Nascimento
, and
C.
Kannenberg
, “
A new look at the identification of low-level jets in South America
,”
Mon. Weather Rev.
146
,
2315
2334
(
2018
).
6.
F. S.
Whyte
,
M. A.
Taylor
,
T. S.
Stephenson
, and
J. D.
Campbell
, “
Features of the Caribbean low level jet
,”
Int. J. Climatol.
28
,
119
128
(
2007
).
7.
A.
Lampert
,
B.
Bernalte Jimenez
,
G.
Gross
,
D.
Wulff
, and
T.
Kenull
, “
One-year observations of the wind distribution and low-level jet occurrence at Braunschweig, North German Plain
,”
Wind Energy
19
,
1807
1817
(
2016
).
8.
D.
Li
,
H.
von Storch
,
B.
Yin
,
Z.
Xu
,
J.
Qi
,
W.
Wei
, and
D.
Guo
, “
Low-level jets over the Bohai Sea and Yellow Sea: Climatology, variability, and the relationship with regional atmospheric circulations
,”
J. Geophys. Res.: Atmos.
123
,
5240
5260
, (
2018
).
9.
P. T.
May
, “
The Australian nocturnal jet and diurnal variations of boundary-layer winds over Mt. Isa in North-eastern Australia
,”
Q. J. R. Meteorol. Soc.
121
,
987
1003
(
1995
) .10.1002/qj.49712152503
10.
O.
Chiba
and
S.
Kobayashi
, “
A study of the structure of low-level katabatic winds at Mizuho Station, East Antarctica
,”
Boundary Layer Meteorol.
37
,
343
355
(
1986
).
11.
D. O.
ReVelle
and
E. D.
Nilsson
, “
Summertime low-level jets over the high-latitude arctic ocean
,”
J. Appl. Meteorol. Clim.
47
,
1770
1784
(
2008
).
12.
J.
Wilczak
,
C.
Finley
,
J.
Freedman
,
J.
Cline
,
L.
Bianco
,
J.
Olson
,
I.
Djalalova
,
L.
Sheridan
,
M.
Ahlstrom
, and
J.
Manobianco
, “
The Wind Forecast Improvement Project (WFIP): A public–private partnership addressing wind energy forecast needs
,”
Bull. Am. Meteorol. Soc.
96
,
1699
1718
(
2015
).
13.
W.
Gutierrez
,
G.
Araya
,
P.
Kiliyanpilakkil
,
A.
Ruiz-Columbie
,
M.
Tutkun
, and
L.
Castillo
, “
Structural impact assessment of low level jets over wind turbines
,”
J. Renewable Sustainable Energy
8
,
023308
(
2016
).
14.
R.
Banta
,
R.
Newsom
,
J.
Lundquist
,
Y.
Pichugina
,
R.
Coulter
, and
L.
Mahrt
, “
Nocturnal low-level jet characteristics over Kansas during CASES-99
,”
Boundary Layer Meteorol.
105
,
221
252
(
2002
).
15.
S.
Emeis
, “
Wind speed and shear associated with low-level jets over Northern Germany
,”
Meteorol. Z.
23
,
295
304
(
2014
).
16.
C.
Jones
, “
Recent changes in the South America low-level jet
,”
npj Clim. Atmos. Sci.
2
,
1
8
(
2019
).
17.
A. C.
Fitch
,
J. K.
Lundquist
, and
J. B.
Olson
, “
Mesoscale influences of wind farms throughout a diurnal cycle
,”
Mon. Weather Rev.
141
,
2173
2198
(
2013
).
18.
V.
Sharma
,
M.
Parlange
, and
M.
Calaf
, “
Perturbations to the spatial and temporal characteristics of the diurnally-varying atmospheric boundary layer due to an extensive wind farm
,”
Boundary Layer Meteorol.
162
,
255
282
(
2017
).
19.
H.
Lu
and
F.
Porté-Agel
, “
Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer
,”
Phys. Fluids
23
,
065101
(
2011
).
20.
M.
Abkar
,
A.
Sharifi
, and
F.
Porté-Agel
, “
Wake flow in a wind farm during a diurnal cycle
,”
J. Turbul.
17
,
420
441
(
2016
).
21.
W.
Gutierrez
,
A.
Ruiz-Columbie
,
M.
Tutkun
, and
L.
Castillo
, “
The structural response of a wind turbine under operating conditions with a low-level jet
,”
Renewable Sustainable Energy Rev.
108
,
380
391
(
2019
).
22.
X.
Zhang
,
C.
Yang
, and
S.
Li
, “
Influence of the heights of low-level jets on power and aerodynamic loads of a horizontal axis wind turbine rotor
,”
Atmosphere
10
,
132
(
2019
).
23.
J. S.
Na
,
E.
Koo
,
E. K.
Jin
,
R.
Linn
,
S. C.
Ko
,
D.
Muñoz-Esparza
, and
J. S.
Lee
, “
Large-eddy simulations of wind–farm wake characteristics associated with a low-level jet
,”
Wind Energy
21
,
163
173
(
2018
).
24.
S. N.
Gadde
and
R. J.
Stevens
, “
Interaction between low-level jets and wind farms in a stable atmospheric boundary layer
,”
Phys. Rev. Fluids
6
,
014603
(
2021
).
25.
A.
Doosttalab
,
D.
Siguenza-Alvarado
,
V.
Pulletikurthi
,
Y.
Jin
,
H.
Bocanegra Evans
,
L. P.
Chamorro
, and
L.
Castillo
, “
Interaction of low-level jets with wind turbines: On the basic mechanisms for enhanced performance
,”
J. Renewable Sustainable Energy
12
,
053301
(
2020
).
26.
S. N.
Gadde
and
R. J.
Stevens
, “
Effect of low-level jet height on wind farm performance
,”
J. Renewable Sustainable Energy
13
,
013305
(
2021
).
27.
D. T.
Griffith
,
M. F.
Barone
,
J.
Paquette
,
B. C.
Owens
,
D. L.
Bull
,
C.
Simao-Ferriera
,
A.
Goupee
, and
M.
Fowler
, “
Design studies for deep-water floating offshore vertical axis wind turbines
,”
Report No. SAND2018-7002
(
2018
).
28.
J. O.
Dabiri
, “
Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays
,”
J. Renewable Sustainable Energy
3
,
043104
(
2011
).
29.
G.
Bergeles
,
A.
Michos
, and
N.
Athanassiadis
, “
Velocity vector and turbulence in the symmetry plane of a Darrieus wind generator
,”
J. Wind Eng. Ind. Aerodyn.
37
,
87
101
(
1991
).
30.
M.
Abkar
, “
Theoretical modeling of vertical-axis wind turbine wakes
,”
Energies
12
,
10
(
2018
).
31.
P.
Ouroa
and
M.
Lazennecc
, “
Analytical models for the asymmetric wake of vertical axis wind turbines
,” arXiv:2010.00301 (
2020
).
32.
J. H.
Strickland
,
B.
Webster
, and
T.
Nguyen
, “
A vortex model of the Darrieus turbine: An analytical and experimental study
,” J. Fluids Eng. 101(4), 500–505 (
1979
).10.1115/1.3449018
33.
G.
Brochier
,
P.
Fraunie
,
C.
Beguier
, and
I.
Paraschivoiu
, “
Water channel experiments of dynamic stall on Darrieus wind turbine blades
,”
J. Propul. Power
2
,
445
449
(
1986
).
34.
M.
Islam
,
D. S.-K.
Ting
, and
A.
Fartaj
, “
Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines
,”
Renewable Sustainable Energy Rev.
12
,
1087
1109
(
2008
).
35.
N.
Fujisawa
and
S.
Shibuya
, “
Observations of dynamic stall on Darrieus wind turbine blades
,”
J. Wind Eng. Ind. Aerodyn.
89
,
201
214
(
2001
).
36.
G.
Tescione
,
D.
Ragni
,
C.
He
,
C. S.
Ferreira
, and
G.
Van Bussel
, “
Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry
,”
Renewable Energy
70
,
47
61
(
2014
).
37.
K. J.
Ryan
,
F.
Coletti
,
C. J.
Elkins
,
J. O.
Dabiri
, and
J. K.
Eaton
, “
Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine
,”
Exp. Fluids
57
,
38
(
2016
).
38.
H.
Kadum
,
S.
Friedman
,
E. H.
Camp
, and
R. B.
Cal
, “
Development and scaling of a vertical axis wind turbine wake
,”
J. Wind Eng. Ind. Aerodyn.
174
,
303
311
(
2018
).
39.
D. B.
Araya
,
T.
Colonius
, and
J. O.
Dabiri
, “
Transition to bluff-body dynamics in the wake of vertical-axis wind turbines
,”
J. Fluid Mech.
813
,
346
381
(
2017
).
40.
P.
Ouro
,
S.
Runge
,
Q.
Luo
, and
T.
Stoesser
, “
Three-dimensionality of the wake recovery behind a vertical axis turbine
,”
Renewable Energy
133
,
1066
1077
(
2019
).
41.
V. F.-C.
Rolin
and
F.
Porté-Agel
, “
Experimental investigation of vertical-axis wind-turbine wakes in boundary layer flow
,”
Renewable Energy
118
,
1
13
(
2018
).
42.
S.
Shamsoddin
and
F.
Porté-Agel
, “
A large-eddy simulation study of vertical axis wind turbine wakes in the atmospheric boundary layer
,”
Energies
9
,
366
(
2016
).
43.
P.
Bachant
and
M.
Wosnik
, “
Effects of Reynolds number on the energy conversion and near-wake dynamics of a high solidity vertical-axis cross-flow turbine
,”
Energies
9
,
73
(
2016
).
44.
M. A.
Miller
,
S.
Duvvuri
,
I.
Brownstein
,
M.
Lee
,
J. O.
Dabiri
, and
M.
Hultmark
, “
Vertical-axis wind turbine experiments at full dynamic similarity
,”
J. Fluid Mech.
844
,
707
720
(
2018
).
45.
A.
Lloyd
, “
The generation of shear flow in a wind tunnel
,”
Q. J. R. Meteorol. Soc.
93
,
79
96
(
1967
).
46.
L. P.
Chamorro
,
R.
Arndt
, and
F.
Sotiropoulos
, “
Reynolds number dependence of turbulence statistics in the wake of wind turbines
,”
Wind Energy
15
,
733
742
(
2012
).
47.
H.
Liu
,
I.
Hayat
,
Y.
Jin
, and
L.
Chamorro
, “
On the evolution of the integral time scale within wind farms
,”
Energies
11
,
93
(
2018
).
48.
R. B.
Cal
,
J.
Lebrón
,
L.
Castillo
,
H. S.
Kang
, and
C.
Meneveau
, “
Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer
,”
J. Renewable Sustainable Energy
2
,
013106
(
2010
).
49.
M.
Bastankhah
and
F.
Porté-Agel
, “
Experimental and theoretical study of wind turbine wakes in yawed conditions
,”
J. Fluid Mech.
806
,
506
541
(
2016
).
50.
H.
Lam
and
H.
Peng
, “
Measurements of the wake characteristics of co-and counter-rotating twin h-rotor vertical axis wind turbines
,”
Energy
131
,
13
26
(
2017
).
51.
A.
Vergaerde
,
T.
De Troyer
,
S.
Muggiasca
,
I.
Bayati
,
M.
Belloli
,
J.
Kluczewska-Bordier
,
N.
Parneix
,
F.
Silvert
, and
M. C.
Runacres
, “
Experimental characterisation of the wake behind paired vertical-axis wind turbines
,”
J. Wind Eng. Ind. Aerodyn.
206
,
104353
(
2020
).
52.
I. D.
Brownstein
,
N. J.
Wei
, and
J. O.
Dabiri
, “
Aerodynamically interacting vertical-axis wind turbines: Performance enhancement and three-dimensional flow
,”
Energies
12
,
2724
(
2019
).
You do not currently have access to this content.