This study presents the results of an experimental investigation focusing on the effects of the inflow boundary layer on the wake characteristics of a 0.12 m diameter porous disk with radially non-uniform porosity in terms of mean flow, turbulence, and wake scaling. Two-dimensional two-component particle image velocimetry measurements within the wake are performed up to 7.5 diameters downstream as the disk is lowered deeper into a boundary layer that is representative of a neutral atmospheric boundary layer over a flat terrain. Results show that otherwise symmetrical wake velocity profiles that exist outside the boundary layer get skewed and sheared around the disk centerline in the boundary layer due to the inflow wind shear. The turbulent kinetic energy, its production, and Reynolds shear stress levels in the wake get asymmetrical around the centerline of the disk such that the production of turbulent kinetic energy is observed to be higher above centerline. Due to the inflow shear, the wake centerline gets shifted downwards (i.e., toward the wind tunnel wall), which is in contrast to the observations on real wind turbine wakes in the literature where the wake actually lifts up. The asymmetrical and skewed velocity profiles both in the streamwise and cross-stream directions can be collapsed onto a single function by using proper wake scaling parameters based on the ratio of local strain to average strain within the velocity profile calculated separately for either side of the wake.

1.
L. J.
Vermeer
,
J. N.
Sorensen
, and
A.
Crespo
, “
Wind turbine wake aerodynamics
,”
Prog. Aerosp. Sci.
39
,
467
510
(
2003
).
2.
G. A. M.
van Kuik
 et al, “
Long-term research challenges in wind energy—A research agenda by the European Academy of wind energy
,”
Wind Energy Sci.
1
,
1
39
(
2016
).
3.
L. M.
Bardal
,
L. R.
Sætran
, and
E.
Wangsnessa
, “
Performance test of a 3 MW wind turbine—Effects of shear and turbulence
,”
Energy Proc.
80
,
83
91
(
2015
).
4.
L. M.
Bardal
and
L. R.
Sætran
, “
Influence of turbulence intensity on wind turbine power curves
,”
Energy Proc.
137
,
553
558
(
2017
).
5.
L. J. L.
Stival
,
A. K.
Guetter
, and
F. O.
Andrade
, “
The impact of wind shear and turbulence intensity on wind turbine power performance
,”
ESPAÇO Energia
(
27
),
(
2017
).
6.
Y.
Sakagami
,
P. A.
Santos
,
R.
Haas
,
J. C.
Passos
, and
F. F.
Taves
, “
Effects of turbulence, wind shear, wind veer, and atmospheric stability on power performance a case study in Brazil
,” in
Proceedings of the EWEA Annual Event
,
2015
.
7.
A.
Jimenez
,
A.
Crespo
,
E.
Migoya
, and
J.
Garcia
, “
Advances in large-eddy simulation of a wind turbine wake
,”
J. Phys.: Conf. Ser.
75
,
012041
(
2007
).
8.
A.
Jimenez
,
A.
Crespo
,
E.
Migoya
, and
J.
Garcia
, “
Large-eddy simulation of spectral coherence in a wind turbine wake
,”
Environ. Res. Lett.
3
,
015004
(
2008
).
9.
D.
Cabezon
,
J.
Sanz
,
I.
Marti
, and
A.
Crespo
, “
CFD modelling of the interaction between the surface boundary layer and rotor wake
,” in
Proceedings of the European Wind Energy Conference
, Marseille, France,
2009
.
10.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind-turbine array boundary layers
,”
Phys. Fluids
22
,
015110
(
2010
).
11.
Y. T.
Wu
and
F.
Porte-Agel
, “
Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parametrisations
,”
Boundary Layer Meteorol.
138
,
345
366
(
2011
).
12.
H. O.
Espinosa
,
S. P.
Breton
,
K.
Nilsson
,
C.
Masson
,
L.
Dufresne
, and
S.
Ivanell
, “
Assessment of turbulence modelling in the wake of an actuator disk with a decaying turbulence inflow
,”
Appl. Sci.
8
(
9
),
1530
(
2018
).
13.
N.
Troldborg
,
J. N.
Sorensen
, and
R.
Mikkelsen
, “
Numerical simulations of wake characteristics of a wind turbine in uniform inflow
,”
Wind Energy
13
(
1
),
86
99
(
2010
).
14.
L. A.
Martínez‐Tossas
,
M. J.
Churchfield
, and
S.
Leonardi
, “
Large eddy simulations of the flow past wind turbines: Actuator line and disk modeling
,”
Wind Energy
18
(
6
),
1047
1060
(
2015
).
15.
J. N.
Sørensen
and
W. Z.
Shen
, “
Numerical modeling of wind turbine wakes
,”
ASME J. Fluids Eng.
124
(
2
),
393
399
(
2002
).
16.
J. N.
Sørensen
,
R. F.
Mikkelsen
,
D. S.
Henningson
,
S.
Ivanell
,
S.
Sarmast
, and
S. J.
Andersen
, “
Simulation of wind turbine wakes using the actuator line technique
,”
Philos. Trans. R. Soc.
373
(
2035
),
20140071
(
2015
).
17.
F.
Porte-Agel
,
Y. T.
Wu
,
H.
Lu
, and
R. J.
Conzemius
, “
Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms
,”
J. Wind Eng. Ind. Aerodyn.
99
,
154
168
(
2011
).
18.
T.
Uchida
, “
Effects of inflow shear on wake characteristics of wind-turbines over flat terrain
,”
Energies
13
(
14
),
3745
(
2020
).
19.
N. N.
Sørensen
,
J. A.
Michelsen
, and
S.
Schreck
, “
Navier–Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft × 120 ft wind tunnel
,”
Wind Energy
5
,
151
169
(
2002
).
20.
A.
Bechmann
and
N. N.
Sørensen
, “
CFD simulation of the MEXICO rotor wake
,” in
Proceedings of the European Wind Energy Conference and Exhibition
, Marseille,
2009
.
21.
N.
Zhou
,
J.
Chen
,
D. E.
Adams
, and
S.
Fleeter
, “
Influence of inflow conditions on turbine loading and wake structures predicted by large eddy simulations using exact geometry
,”
Wind Energy
19
,
803
824
(
2016
).
22.
N.
Sezer-Uzol
,
A.
Gupta
, and
L. N.
Long
, “
3-d time-accurate inviscid and viscous CFD simulations of wind turbine rotor flow fields
,” in
Proceedings of the International Conference on Parallel Computational Fluid Dynamics
, Antalya,
2007
.
23.
B.
Sanderse
,
S. P.
van der Pijl
, and
B.
Koren
, “
Review of CFD for wind turbine wake aerodynamics
,”
Wind Energy
14
,
799
819
(
2011
).
24.
G. P.
Corten
,
P.
Schaak
, and
T.
Hegberg
, “
Turbine interaction in large offshore wind farms wind tunnel measurements
,”
Report No. ECN-C-04-048
,
2004
.
25.
D.
Medici
and
P. H.
Alfredsson
, “
Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding
,”
Wind Energy
9
,
219
236
(
2006
).
26.
D. E.
Neff
,
R. N.
Meroney
,
E.
McCarthy
, and
E.
Davis
, “
Upstream and lateral wake effects on wind turbine performances
,”
J. Wind Eng. Ind. Aerodyn.
36
,
1405
1414
(
1990
).
27.
P. E. J.
Vermeulen
and
P. J. H.
Builtjes
, “
Turbulence measurements in simulated wind-turbine clusters
,”
TNO Report No. 82-03003
,
1982
.
28.
S.
Aubrun
, “
Modelling wind turbine wakes with a porosity concept
,”
in Wind Energy: Proceedings of the Euromech Colloquium
, edited by
J.
Peinke
,
P.
Schaumann
, and
S.
Barth
(
Springer
,
2005
), pp.
265
270
.
29.
S.
Aubrun
,
Ph.
Devinant
, and
G.
Espana
, “
Physical modelling of the far wake from wind turbines
: Application to wind turbine interactions,” in
Proceedings of the European Wind Energy Conference
, Milan, Italy,
2007
.
30.
S.
Aubrun
,
G.
Espana
,
S.
Loyer
,
P.
Hayden
, and
P.
Hancock
, “
Is the actuator disc concept sufficient to model the far-wake of a wind turbine
,” in
Proceedings of the Progress in Turbulence and Wind Energy IV
, SPPHY,
2012
, pp.
227
230
.
31.
S.
Aubrun
,
S.
Loyer
,
P. E.
Hancock
, and
P.
Hayden
, “
Wind turbine wake properties: Comparison between a non-rotating simplified wind turbine model and a rotating model
,”
J. Wind Eng. Ind. Aerodyn.
120
,
1
8
(
2013
).
32.
G.
España
,
S.
Aubrun
,
S.
Loyer
, and
P.
Devinant
, “
Spatial study of the wake meandering using modelled wind turbines in a wind tunnel
,”
Wind Energy
14
,
923
937
(
2011
).
33.
G.
España
,
S.
Aubrun
,
S.
Loyer
, and
P.
Devinant
, “
Wind tunnel study of the wake meandering downstream of a modelled wind turbine as an effect of large-scale turbulent eddies
,”
J. Wind Eng. Ind. Aerodyn.
101
,
24
33
(
2012
).
34.
L. E. M.
Lignarolo
,
D.
Ragni
,
C. J. S.
Ferreira
, and
G. J. W.
van Bussel
, “
Kinetic energy entrainment in wind turbine and actuator disc wakes-an experimental analysis
,”
J. Phys.: Conf. Ser.
524
,
012163
(
2014
).
35.
L. E. M.
Lignarolo
,
D.
Ragni
,
C. J. S.
Ferreira
, and
G. J. W.
van Bussel
, “
Experimental comparison of a wind-turbine and of an actuator-disc near wake
,”
J. Renewable Sustainable Energy
8
,
023301
(
2016
).
36.
E. H.
Camp
and
R. B.
Cal
, “
Mean kinetic energy transport and event classification in a model wind turbine array versus an array of porous disks: Energy budget and octant analysis
,”
Phys. Rev. Fluids
1
,
044404
(
2016
).
37.
E. H.
Camp
and
R. B.
Cal
, “
Low dimensional representations and anisotropy of a model wind turbine array versus an array of porous disks
,” in Proceedings of the
International Conference on Future Technologies for Wind Energy
,
Boulder, Colorado
,
2017
.
38.
F.
Cuzzola
,
B.
Leitl
, and
M.
Schatzmann
, “
Wind turbines in ABL-flow: A review on wind tunnel studies
,”
Progress in Turbulence and Wind Energy IV
(Springer,
2010
), pp.
239
242
.
39.
M. F.
Howland
,
J.
Bossuyt
,
L. A.
Martinez-Tossas
,
J.
Meyers
, and
C.
Meneveau
, “
Wake structure in actuator disk models of wind turbines under uniform inflow conditions
,”
J. Renewable Sustainable Energy
8
,
043301
(
2016
).
40.
W.
Yu
,
V. W.
Hong
,
C.
Ferreira
, and
G. A. M.
van Kuik
, “
Experimental analysis on the dynamic wake of an actuator disc undergoing transient loads
,”
Exp. Fluids
58
,
149
(
2017
).
41.
S.
Aubrun
 et al, “
Round-robin tests of porous disc models
,”
J. Phys.: Conf. Ser.
1256
,
012004
(
2019
).
42.
H. P.
Irwin
, “
The design of spire for wind simulation
,”
J. Wind Eng. Ind. Aerodyn.
7
,
361
366
(
1981
).
43.
T.
Burton
,
N.
Jenkins
,
D.
Sharpe
, and
E.
Bossanyi
,
Wind Energy Handbook
, 2nd ed. (
Wiley Online Library
,
2011
).
44.
J. M.
Wallace
and
P. V.
Hobbs
,
Atmospheric Science: An Introductory Survey
(
Academic Press
,
Cambridge
,
2006
).
45.
L. P.
Chamorro
,
R. E. A.
Arndt
, and
F.
Sotiropoulos
, “
Reynolds number dependence of turbulence statistics in the wake of wind turbines
,”
Wind Energy
15
,
733
742
(
2012
).
46.
L.
Benedict
and
R.
Gould
, “
Towards better uncertainty estimates for turbulence statistics
,”
Exp. Fluids
22
(
2
),
129
136
(
1996
).
47.
A.
Sciacchitano
and
B.
Wieneke
, “
PIV uncertainty propagation
,”
Meas. Sci. Technol.
27
(
8
),
084006
(
2016
).
48.
A.
Sciacchitano
, “
Uncertainty quantification in particle image velocimetry
,”
Meas. Sci. Technol.
30
(
9
),
092001
(
2019
).
49.
N.
Sezer-Uzol
and
O.
Uzol
, “
Effect of steady and transient wind shear on the wake structure and performance of a horizontal axis wind turbine rotor
,” AIAA Paper No. 2009-1406,
2009
.
50.
N.
Sezer-Uzol
and
O.
Uzol
, “
Effect of steady and transient wind shear on the wake structure and performance of a horizontal axis wind turbine rotor
,”
Wind Energy
16
,
1
17
(
2013
).
51.
D.
Micallef
,
C. S.
Ferreira
,
T.
Sant
, and
G.
van Bussel
, “
An analytical model of wake deflection due to shear flow
,” in
Proceedings of the 3rd EWEA Conference-Torque 2010: The Science of Making Torque from Wind
, Heraklion, Crete, Greece, 28–30 June
2010
.
52.
G.
Kocer
,
N.
Chokani
, and
R. S.
Abhari
, “
Wake structure of a 2 MW wind turbine measured using an instrumented UAV
,” AIAA Paper No. 2012-0231,
2012
.
53.
M.
Zendehbad
,
N.
Chokani
, and
R. S.
Abhari
, “
Volumetric three-dimensional wind measurement using a single mobile-based LiDAR
,”
ASME J. Sol. Energy Eng.
138
,
011003
(
2016
).
54.
W.
Zhang
,
C. D.
Markfort
, and
F.
Porté-Agel
, “
Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer
,”
Exp. Fluids
52
,
1219
1235
(
2012
).
55.
M.
Gad-El-Hak
and
S.
Corrsin
, “
Measurements of the nearly isotropic turbulence behind a uniform jet grid
,”
J. Fluid Mech.
62
,
115
(
1974
).
56.
M. S.
Mohamed
and
J. C.
Larue
, “
The decay power law in grid-generated turbulence
,”
J. Fluid Mech.
219
,
195
(
1990
).
57.
S. B.
Pope
,
Turbulent Flows
, 1st ed. (
Cambridge University Press
,
Cambridge
,
2000
).
58.
F. O.
Thomas
and
X.
Liu
, “
An experimental investigation of symmetric and asymmetric turbulent wake development in pressure gradient
,”
Phys. Fluids
16
,
1725
(
2004
).
59.
Y.-C.
Chow
,
O.
Uzol
,
J.
Katz
, and
C.
Meneveau
, “
Decomposition of the spatially filtered and ensemble averaged kinetic energy, the associated fluxes and scaling trends in a rotor wake
,”
Phys. Fluids
17
,
085102
(
2005
).
You do not currently have access to this content.