The growing installed wind capacity over the last decade has led many energy regulators to define specific grid codes for wind energy generation systems connecting to the electricity grid. These requirements impose strict laws regarding the Low Voltage Ride Though (LVRT) and High Voltage Ride Though (HVRT) capabilities of wind turbines during voltage disturbances. The main aim of this paper is to propose LVRT and HVRT strategies that allow wind systems to remain connected during severe grid voltage disturbances. Power quality issues associated with harmonics and inter-harmonics are also discussed and a control scheme for the grid-side converter is proposed to make the Wind Energy Conversion System insensitive to external disturbances and parametric variations. The Selective Harmonic Elimination Pulse Width Modulation technique based on Genetic Algorithm optimization is employed to overcome over-modulation problems, reduce the amplitudes of harmonics, and thus reduce the Total Harmonic Distortion in the current and voltage waveforms. Furthermore, to compensate for the fluctuations of the wind speed due to turbulence at the blades of the turbine, a fuzzy Proportional-Integral-Derivative controller with adaptive gains is proposed to control the converter on the generator side.

1.
GWE Council
, GWEC, “
Global wind report. Annual market
,” (
2011
).
2.
C. Q.
Gómez Muñoz
and
F. P.
García Márquez
, “
Wind energy power prospective
,” in
Renewable Energies
(
Springer
,
2018
), pp.
83
95
3.
Wind Europe,
Wind in power-2016 European statistics
” (
Wind Europe Business Intelligence
,
2017
).
4.
S.
Djohra
,
M.
Haddadi
, and
M.
Belhamel
, “
Systèmes décentralisés connectés au réseau électrique: Etude technique, économique et environnementale des systèmes décentralisés connectés au réseau électrique
,” (
Éditions universitaires européennes
,
2014
).
5.
Y.
Yang
,
W.
Chen
, and
F.
Blaabjerg
, “
Advanced control of photovoltaic and wind turbines power systems
,”
Adv. Intell. Control Power Electron. Drives
531
,
41
89
(
2014
).
6.
L.
Hadjidemetriou
,
E.
Kyriakides
,
Y.
Yang
, and
F.
Blaabjerg
, “
A synchronization method for single-phase grid-tied inverters
,”
IEEE Trans. Power Electron.
31
(
3
),
2139
2149
(
2016
).
7.
W.
Uddin
,
K.
Zeb
,
A.
Tanoli
, and
A.
Haider
, “
Hardware-based hybrid scheme to improve the fault ride through capability of doubly fed induction generator under symmetrical and asymmetrical fault
,”
IET Gener. Transm. Distrib.
12
(
1
),
200
206
(
2018
).
8.
K. V.
Shihabudheen
,
S. K.
Raju
, and
G. N.
Pillai
, “
Control for grid- connected DFIG-based wind energy system using adaptive neuro-fuzzy technique
,”
Int. Trans. Electric Energy Syst.
28
(
5
),
e2526
(
2018
).  
9.
S. A. E. M.
Ardjoun
,
M.
Denai
, and
M.
Abid
, “
A robust power control strategy to enhance LVRT capability of grid-connected DFIG-based wind energy systems
,”
Wind Energy
22
(
6
),
834
847
(2019).
10.
M. A. S.
Ali
,
K. K.
Mehmood
,
S.
Baloch
, and
C.-H.
Kim
, “
Modified rotor-side converter control design for improving the LVRT capability of a DFIG-based WECS
,”
Electric Power Syst. Res.
186
,
106403
(
2020
).
11.
A. D.
Falehi
and
M.
Rafiee
, “
LVRT/HVRT capability enhancement of DFIG wind turbine using optimal design and control of novel PIλDμ-AMLI based DVR
,”
Sustainable Energy, Grids Networks
16
,
111
125
(
2018
).
12.
R. M.
Silva
,
A. F.
Cupertino
,
G. M.
Rezende
,
C. V.
Sousa
, and
V. F.
Mendes
, “
Power control strategies for grid connected converters applied to full-scale wind energy conversion systems during LVRT operation
,”
Electric Power Syst. Res.
184
,
106279
(
2020
).
13.
C.
Zhou
,
Z.
Wang
,
P.
Ju
, and
D.
Gan
, “
A high voltage ride through strategy for DFIG considering HVDC system converter blocking
,”
Math., Comput. Sci.
8
(
3
),
491
498
(
2019
).
14.
A.
Shruthi
, “
A novel genetic algorithm for selective harmonic elimination in cascade switched diode MLC
,”
Int. J. Advance Res. Sci. Eng.
4
(
2
),
812
818
(
2015
).
15.
M.
Doumi
,
A.
Aissaoui
,
M.
Abid
,
A.
Tahour
, and
K.
Tahir
, “
Robust fuzzy gains scheduling of RST controller for a WECS based on a doubly-fed induction generator
,”
Automatika
57
,
617
626
(
2016
).
16.
Y.
Riffonneau
,
S.
Bacha
,
F.
Barruel
, and
S.
Ploix
, “
Optimal power flow management for grid connected PV systems with batteries
,”
IEEE Trans. Sustainable Energy
2
(
3
),
309
320
(
2011
). 
17.
Z.
Shan
,
S.
Yongduan
,
W.
Lei
, and
Z.
Zheng
, “
Neuron-adaptive PID based speed control of SCSG wind turbine system
,”
Abstr. Appl. Anal.
2014
(
5
),
1
10
.
18.
Y.
Xiuxing
, “
Hybrid adaptive control for variable-speed variable-pitch wind energy systems using general regression neural network
,”
J. Wind Energy
(published online, 2018).
19.
S. A.
Taher
,
M.
Farshadnia
, and
M. R.
Mozdianfard
, “
Optimal gain scheduling controller design of a pitch-controlled VS-WECS using DE optimization algorithm
,”
Appl. Software Comput.
13
(
5
),
2215
2223
(
2013
).
20.
Y. F.
Ho
,
C. C.
Chang
,
C. C.
Wei
, and
H. L.
Wang
, “
Multi-objective programming model for energy conservation and renewable energy structure of a low carbon campus
,”
Energy Build.
80
,
461
468
(
2014
).
21.
F.
Filho
,
L. M.
Tolbert
,
Y.
Cao
, and
B.
Ozpineci
, “
Real-time selective harmonic minimization for multilevel inverters connected to solar panels using artificial neural network angle generation
,”
IEEE Trans. Ind. Appl
47
,
2117
2124
(
2011
).
22.
G.
Zhang
,
J.
Yang
, and
Y.
Sun
, “
A predictive-control based over-modulation method for conventional matrix converters
,”
IEEE Trans. Power Electron.
33
(
4
),
3631
3643
(
2018
).
23.
X.
Guo
,
M.
He
, and
Y.
Yang
, “
Over-modulation strategy of power converters: A review
,”
IEEE Access
6
,
69528
69544
(
2018
).
24.
A.
Hren
and
F.
Mihalic
, “
An improved SPWM-based control with over-modulation strategy of the third harmonic elimination for a single-phase inverter
,”
Energies
11
(
4
),
881
(
2018
).
25.
H. L.
Fu
and
H. T.
Thien
,
Modeling a Wind Turbine System Using DFIG and Realization of Current Control on the Model with Fuzzy Logic Controller
, Lecture Notes in Electrical Engineering Vol.
282
(
Springer
,
2014
), pp.
8
92
.
26.
P.
Ponce
,
H.
Ponce
, and
A.
Molina
, “
Doubly fed induction generator (DFIG) wind turbine controlled by artificial organic networks
,”
Soft Comput.
22
(
9
),
2867
2879
(
2018
).
27.
A.
Tamaarat
and
A.
Benakcha
, “
Performance de la commande des puissances active et réactive dans une éolienne basée sur une MADA
,”
Rev. Energies Renouvelables
20
(
4
),
635
647
(
2017
).
28.
O.
Uchechi
,
J.
Peter
,
W.
Linda
, and
R.
Angele
, “
Comparison of two residential smart grid pilots in the Netherlands and in the USA, focusing on energy performance and user experiences
,”
Appl. Energy
191
,
264
275
(
2017
).
29.
H.
Merabet Boulouiha
,
A.
Allali
,
M.
Laouer
,
A.
Tahri
,
M.
Denai
, and
A.
Draou
, “
Direct torque control of multilevel SVPWM inverter in variable speed SCIG-based wind energy conversion system
,”
Renewable Energy
80
,
140
152
(
2015
).
30.
M.
Amer Saeeda
,
H.
Mehroz Khana
,
A.
Ashrafb
, and
S.
Aftab Qureshia
, “
Analyzing effectiveness of LVRT techniques for DFIG wind turbine system and implementation of hybrid combination with control schemes
,”
Renewable Sustainable Energy Rev.
81
(
2
),
2487
2501
(
2018
).
31.
B.
Yeongsu
,
L.
June-Seok
, and
L.
Kyo-Beum
, “
Low-Voltage Ride-Through Control Strategy for a Grid-Connected Energy Storage System
,”
Appl. Sci.
8
,
57
(
2018
).
32.
M.
Rahimi
and
M.
Parniani
, “
Efficient control scheme of wind turbines with doubly induction generators for low-voltage ride-through capability enhancement
,”
IET Renewable Power Gener.
4
(
3
),
242
252
(
2010
).
33.
J.
Yang
,
D. G.
Dorrell
, and
J. E.
Fletcher
, “
Fault ride-through of doubly-fed induction generator with converter protection schemes
,” in
IEEE International Conference on Sustainable Energy Technologies (ICSET 2008)
(
2008
).
34.
Y. E.
Karkri
,
H. E.
Markhi
,
H. E.
Moussaou
, and
T.
Lamhamdi
, “
LVRT and HVRT control strategies of doubly-fed induction generator
,”
Int. J. Renew. Energy Res.
7
(
3
),
1258
1269
(2018).
35.
D.
Zhou
and
F.
Blaabjerg
, “
Optimized demagnetizing control of DFIG power converter for reduced thermal stress during symmetrical grid fault
,”
IEEE Trans. Power Electron.
33
(
12
),
10326
10340
(
2018
).
36.
M. M.
Shabestary
,
Y.
Abdel-Rady
, and
I.
Mohamed
, “
Asymmetrical ride-through (ART) and grid-support in converter-interfaced DG units under unbalanced conditions
,”
IEEE Trans. Ind. Electron.
66
,
1130
(
2019
).
37.
Z.
Hongbo
,
Y.
Liangzhong
,
W.
Weisheng
 et al., “
Outage analysis of large scale wind power under high voltage condition and coordinated prevention and control strategy
,”
Autom. Electr. Power Syst.
39
(
23
),
43
48
(
2015
).
38.
L.
Shaolin
,
W.
Weisheng
,
W.
Ruiming
 et al., “
Control strategy and experiment research on high voltage ride through for DFIG-based wind turbines
,”
Autom. Electric Power Syst.
40
(
16
),
76
82
(
2016
).
39.
X.
Zhen
,
Z.
Xing
,
S.
Haihua
 et al., “
Variable damping based control strategy of doubly fed induction generator based wind turbines under grid voltage swell
,”
Autom. Electr. Power Syst.
36
(
3
),
39
46
(
2012
).
40.
L.
Shaolin
,
Q.
Shiyao
,
W.
Ruiming
,
Y.
Xuesong
, and
D.
Linwang
, “
Study on voltage with stand characteristics and HVRT control strategy for DFIG wind turbines
,” in
Proceeding of the International Conference on Power System Technology (POWERCON)
(
2018
), pp.
1183
1189
.
41.
R.
Li
,
H.
Geng
, and
G.
Yang
, “
Fault ride-through of renewable energy conversion systems during voltage recovery
,”
J. Mod. Power Syst. Clean Energy
4
(
1
),
28
39
(
2016
).
42.
EriGrid
, “
EriGrid Grid Code v5
” (
EriGrid
,
2013
).
43.
M.
Al-Hitmi
,
S.
Ahmad
, and
A.
Iqbal
, “
Selective harmonic elimination in a wide Modulation range using modified Newton–Raphson and pattern generation methods for a multilevel inverter
,”
Energies
11
(
2
),
458
(
2018
).
44.
H.
Merabet Boulouiha
,
A.
Allali
, and
M.
Denaï
, “
Grid integration of wind energy systems: Control design, stability, and power quality issues
,”
Clean Energy for Sustainable Development
(
Elsevier
2016
).
45.
E.
Anandha Banu
and
D.
Shalini Punithavathani
, “
Real time GA and ANN based selective harmonic elimination in 9 level ups inverter
,”
ICTACT J. Soft Comput.
6
(
4
),
1
11
(
2016
).
46.
A.
Mohamed
et
MA
Awadallah
, “
Selective harmonic elimination in VSI-fed induction motor drives using swarm and genetic optimization
,”
Int. J. Power Electron.
5
(
1
),
1270
1280
(
2013
).
47.
F.
Indra
,
P.
Era
et
AW
Novie
, “
Fuzzy gain scheduling of PID (FGS-PID) for speed control three phase induction motor based on indirect field oriented control (IFOC)
,”
EMITTER Int. J. Eng. Technol.
4
(
2
),
237
258
(
2016
).
You do not currently have access to this content.