In this paper, a procedure for generating a family of parametrical broadband clear-sky models is described. The key element is the conversion of one or more model input variables into tunable mathematical parameters. The approach is tested on the PS model [Paulescu, M. and Schlett, Z., Theor. Appl. Climatol. 75, 203 (2003)], with the free parameter being the Ångström exponent (α). This allows us to fine-tune for conditions dominated by desert dust, urban-industrial, and mixed aerosols. We find that for an arbitrary set of data, the optimal value of the free parameter is not the same as its actual measured value (inserting the measured value in the model would result in a lower performance). We attribute this fact to the inaccurate nature of the base model. The optimal α value varies with the considered solar irradiance component, aerosol type and loading, and the error measure(s) used for assessing model accuracy. A set of recommended models for each aerosol type and loading class is given. The tabled values for the aerosol transmittance coefficients are also listed. A preliminary validation shows that the newly developed models are very reliable. The optimal version generally falls within a few percent of the results of REST2v5, a benchmark model in clear-sky solar irradiance estimation. While some established models outperform REST2v5 for certain aerosol types and for only one solar irradiance component, the new models prove competitive under most scenarios. Beyond showing the performance of the developed model family, these results hint at great potential of our approach.

1.
AERONET
(
2020
). “
Aerosol Robotic Network
,” https://aeronet.gsfc.nasa.gov/; accessed 6 June 2020.
2.
Ångström
,
A.
, “
Techniques of determining the turbidity of the atmosphere
,”
Tellus
13
,
214
223
(
1961
).
3.
Antonanzas-Torres
,
F.
,
Urraca
,
R.
,
Polo
,
J.
,
Perpiñán-Lamigueiro
,
O.
, and
Escobar
,
R.
, “
Clear sky solar irradiance models: A review of seventy models
,”
Renewable Sustainable Energy Rev.
107
,
374
387
(
2019
).
4.
Badescu
,
V.
,
Gueymard
,
C. A.
,
Cheval
,
S.
,
Oprea
,
C.
,
Baciu
,
M.
,
Dumitrescu
,
A.
,
Iacobescu
,
F.
,
Milos
,
I.
, and
Rada
,
C.
, “
Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance measurements in Romania
,”
Renewable Energy
55
,
85
103
(
2013
).
5.
Barman
N.
,
Saha
B.
,
Roy
R.
,
Kundu
S. S.
,
Borgohain
A.
, and
Raju
P. L. N.
, “
Investigation of curvature effect of Ångström exponent to classify the aerosol types over the region of interest (88°–98° E and 20°–30° N)
,”
Atmos. Pollut. Res.
10
,
363
373
(
2019
).
6.
Bergstrom
,
R. W.
,
Pilewskie
P.
,
Russell
,
P. B.
,
Redemann
,
J.
,
Bond
T. C.
,
Quinn
,
P. K.
, and
Sierau
B.
, “
Spectral absorption properties of atmospheric aerosols
,”
Atmos. Chem. Phys.
7
,
5937
5943
(
2007
).
7.
Blaga
,
R.
and
Paulescu
M.
, “
Quantifiers for the solar irradiance variability: A new perspective
,”
Sol. Energy
174
,
606
616
(
2018
).
8.
Campana
,
C. P.
,
Landelius
,
T.
,
Andersson
,
S.
,
Lundström
,
L.
,
Nordlander
,
E.
,
He
,
T.
,
Zhang
,
J.
,
Stridh
,
B
, and
Yan
,
J.
, “
A gridded optimization model for photovoltaic applications
,”
Sol. Energy
202
,
465
484
(
2020
).
9.
Calinoiu
,
D.
,
Stefu
,
N.
,
Boata
,
R.
,
Blaga
,
R.
,
Pop
,
N.
,
Paulescu
,
E.
,
Sabadus
,
A.
, and
Paulescu
,
M.
, “
Parametric modeling: A simple and versatile route to solar irradiance
,”
Energy Convers. Manage.
164
,
175
187
(
2018
).
10.
Cazorla
,
A.
,
Bahadur
,
R.
,
Suski
,
K. J.
,
Cahill
,
J. F.
,
Chand
,
D.
,
Schmid
,
B.
,
Ramanathan
,
V.
, and
Prather
,
K. A.
, “
Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements
,”
Atmos. Chem. Phys.
13
,
9337
9350
(
2013
).
11.
Chen
,
Q.-X.
,
Shen
,
W.-X.
,
Yuan
,
Y.
, and
Tan
,
H.-P.
, “
Verification of aerosol classification methods through satellite and ground-based measurements over Harbin, Northeast China
,”
Atmos. Res.
216
,
167
175
(
2019
).
12.
Davies
,
J. A.
and
McKay
,
D. C.
, “
Estimating solar irradiance and components
,”
Sol. Energy
29
,
55
64
(
1982
).
13.
Davies
,
J. A.
,
Schertzer
,
W.
, and
Nunez
,
M.
, “
Estimating global solar radiation
,”
Boundary-Layer Meteorol.
9
,
33
52
(
1975
).
14.
Frimane
,
Â.
,
Bright
,
J. M.
,
Yang
,
D.
,
Ouhammou
,
B.
, and
Aggour
,
M.
, “
Dirichlet downscaling model for synthetic solar irradiance time series
,”
J. Renewable Sustainable Energy
12
,
063702
(
2020
).
15.
Giles
,
D. M.
,
Holben
,
B. N.
,
Eck
,
T. F.
,
Sinyuk
,
A.
,
Smirnov
,
A.
,
Slutsker
,
I.
,
Dickerson
,
R. R.
,
Thompson
,
A. M.
, and
Schafer
,
J. S.
, “
An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions
,”
J. Geophys. Res.
117
,
D17203
, (
2012
).
16.
Gueymard
,
C. A.
, “
Direct solar transmittance and irradiance predictions with broadband models. Part I: Detailed theoretical performance assessment
,”
Sol. Energy
74
,
355
379
(
2003
).
17.
Gueymard
,
C. A.
, “
High performance model for clear-sky irradiance and illuminance
,” in
Proceedings of the Solar Conference
(
American Solar Energy Society; American Institute of Architects
,
2004
).
18.
Gueymard
,
C. A.
, “
REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation—Validation with a benchmark dataset
,”
Sol. Energy
82
,
272
285
(
2008
).
19.
Gueymard
,
C. A.
, “
Clear-sky irradiance predictions for solar resource mapping and large-scale applications: Improved validation methodology and detailed performance analysis of 18 broadband radiative models
,”
Sol. Energy
86
,
2145
2169
(
2012
).
20.
Gueymard
,
C. A.
and
Ruiz-Arias
J. A.
, “
Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance
,”
Sol. Energy
128
,
1
30
(
2016
).
21.
Gueymard
,
C. A.
, “
Revised composite extraterrestrial spectrum based on recent solar irradiance observations
,”
Sol. Energy
169
,
434
440
(
2018
).
22.
Gueymard
,
C. A.
,
Bright
,
J. M.
,
Lingfors
,
D.
,
Habte
,
A.
, and
Sengupta
,
M.
, “
A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers
,”
Renewable Sustainable Energy Rev.
109
,
412
427
(
2019
).
23.
Hamill
,
P.
 et al, “
An AERONET-based aerosol classification using the Mahalanobis distance
,”
Atmos. Environ.
140
,
213
233
(
2016
).
24.
Hofmann
,
M.
and
Seckmeyer
,
G.
, “
Influence of various irradiance models and their combination on simulation results of photovoltaic systems
,”
Energies
10
,
1495
(
2017
).
25.
Holben
,
B. N.
,
Eck
,
T. F.
,
Slutsker
,
I.
,
Tanre
,
D.
,
Buis
,
J. P.
,
Setzer
,
A.
,
Vermote
,
E.
,
Reagan
,
J. A.
,
Kaufman
,
Y.
,
Nakajima
,
T.
,
Lavenue
,
F.
,
Jankowiak
,
I.
, and
Smirnov
,
A.
, “
AERONET—A federated instrument network and data archive for aerosol characterization
,”
Remote Sens. Environ.
66
,
1
16
(
1998
).
26.
Jarosławski
,
J.
,
Krzyścin
,
J. W.
,
Puchalski
,
S.
, and
Sobolewski
,
P.
, “
On the optical thickness in the UV range: Analysis of the ground‐based data taken at Belsk, Poland
,”
J. Geophys. Res.
108
,
D23
, (
2003
).
27.
Lee
,
J.
,
Kim
,
J.
,
Song
,
C. H.
,
Kim
,
S. B.
,
Chun
,
Y.
,
Sohn
,
B. J.
, and
Holben
,
B. N.
, “
Characteristics of aerosol types from AERONET sunphotometer measurements
,”
Atmos. Environ.
44
,
3110
3117
(
2010
).
28.
Le Quéré
,
C.
,
Jackson
,
R. B.
,
Jones
,
M. W.
,
Smith
,
A. J.
,
Abernethy
,
S.
,
Andrew
,
R. M.
,
De-Gol
,
A. J.
,
Willis
,
D. R.
,
Shan
,
Y.
,
Canadell
,
J. G.
,
Friedlingstein
,
P.
,
Creutzig
,
F.
, and
Peters
,
G. P.
, “
Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement
,”
Nat. Clim. Change
10
,
647
653
(
2020
).
29.
Liu
,
Z.
,
Ciais
,
P.
,
Deng
,
Z.
,
Lei
,
R.
,
Davis
,
S. J.
,
Feng
,
S.
,
Zheng
,
B.
,
Cui
,
D.
,
Dou
,
X.
,
Zhu
,
B.
, and
Guo
,
R.
, “
Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic
,”
Nat. Commun.
11
,
1
12
(
2020
).
30.
Leckner
,
B.
, “
The spectral distribution of solar radiation at the earth's surface–elements of a model
,”
Sol. Energy
20
,
143
150
(
1978
).
31.
Lenton
,
T. M.
,
Rockström
,
J.
,
Gaffney
,
O.
,
Rahmstorf
,
S.
,
Richardson
,
K.
,
Steffen
,
W.
, and
Schellnhuber
,
H.
, “
Climate tipping points—Too risky to bet against
,”
Nature
575
,
592
595
(
2019
).
32.
Long
,
C. N.
and
Shi
,
Y.
, “
An automated quality assessment and control algorithm for surface radiation measurements
,”
Open Atmos. Sci. J.
2
,
23
37
(
2008
).
33.
O'Neill
,
N. T.
,
Eck
,
T. F.
,
Holben
,
B. N.
,
Smirnov
,
A.
,
Dubovik
,
O.
, and
Royer
,
A.
, “
Bimodal size distribution influences on the variation of Angstrom derivatives in spectral and optical depth space
,”
J. Geophys. Res.: Atmos.
106
,
9787
9806
, (
2001
).
34.
Paulescu
,
M.
and
Schlett
,
Z.
, “
A simplified but accurate spectral solar irradiance model
,”
Theor. Appl. Climatol.
75
,
203
212
(
2003
).
35.
Paulescu
,
M.
,
Paulescu
,
E.
,
Gravila
,
P.
, and
Badescu
,
V.
,
Weather Modeling and Forecasting of PV System Operation
(
Springer
,
London
,
2013
).
36.
Paulescu
,
E.
and
Blaga
,
R.
, “
A simple and reliable empirical model with two predictors for estimating 1-minute diffuse fraction
,”
Sol. Energy
180
,
75
84
(
2019
).
37.
Solar Resources Mapping. Fundamentals and Application
, edited by
Polo
,
J.
,
Martin-Pomares
,
L.
, and
Sanfilippo
A.
(
Springer
,
2019
).
38.
Roesch
,
A.
,
Wild
,
M.
,
Ohmura
,
A.
,
Dutton
,
E. G.
,
Long
,
C. N.
, and
Zhang
,
T.
, “
Assessment of BSRN radiation records for the computation of monthly means
,”
Atmos. Meas. Tech.
4
,
339
354
(
2011
).
39.
Ruiz-Arias
,
J. A.
and
Gueymard
,
C. A.
, “
Worldwide inter-comparison of clear-sky solar radiation models: Consensus-based review of direct and global irradiance components simulated at the earth surface
,”
Sol. Energy
168
,
10
29
(
2018
).
40.
Russell
,
P. B.
,
Bergstrom
,
R. W.
,
Shinozuka
,
Y.
,
Clarke
,
A. D.
,
DeCarlo
,
P. F.
,
Jimenez
,
J. L.
,
Livingston
,
J. M.
,
Redemann
,
J.
,
Dubovik
,
O.
, and
Strawa
,
A.
, “
Absorption Angstrom exponent in AERONET and related data as an indicator of aerosol composition
,”
Atmos. Chem. Phys.
10
,
1155
1169
(
2010
).
41.
Schmeisser
,
L.
,
Andrews
,
E.
,
Ogren
,
J. A.
,
Sheridan
,
P.
,
Jefferson
,
A.
,
Sharma
,
S.
,
Kim
,
J. E.
,
Sherman
,
J. P.
,
Sorribas
,
M.
,
Kalapov
,
I.
,
Arsov
,
T.
,
Angelov
,
C.
,
Mayol-Bracero
,
O. L.
,
Labuschagne
,
C.
,
Kim
,
S.-W.
,
Hoffer
,
A.
,
Lin
,
N.-H.
,
Chia
,
H.-P.
,
Bergin
,
M.
,
Sun
,
J.
,
Liu
,
P.
, and
Wu
,
H.
, “
Classifying aerosol type using in situ surface spectral aerosol optical properties
,”
Atmos. Chem. Phys.
17
,
12097
12120
(
2017
).
42.
Schuster
,
G. L.
,
Dubovik
,
O.
, and
Holben
B. N.
, “
Angstrom exponent and bimodal aerosol size distributions
,”
J. Geophys. Res.: Atmos.
111
,
207
, (
2006
).
43.
Spencer
,
W.
, “
Fourier series representation of the position of the sun
,”
Search
2
,
172
(
1971
).
44.
Sun
,
X.
,
Bright
,
J.,M.
,
Gueymard
,
C.,A.
,
Acord
,
B.
,
Wang
,
P.
, and
Engerer
,
N.,A.
, “
Worldwide performance assessment of 75 global clear-sky irradiance models using principal component analysis
,”
Renewable Sustainable Energy Rev.
111
,
550
570
(
2019
).
45.
Urraca
,
R.
,
Huld
,
T.
,
Lindfors
,
A. V.
,
Riihelä
,
A.
,
Martinez-de-Pison
,
F. J.
, and
Sanz-Garcia
,
A.
, “
Quantifying the amplified bias of PV system simulations due to uncertainties in solar radiation estimates
,”
Sol. Energy
176
,
663
677
(
2018
).
46.
Yang
,
K.
,
Huang
,
G. W.
, and
Tamai
,
N.
, “
A hybrid model for estimating global solar radiation
,”
Sol. Energy
70
,
13
22
(
2001
).
47.
Yang
,
D.
,
Alessandrini
,
S.
,
Antonanzas
,
J.
,
Antonanzas-Torres
,
F.
 et al, “
Verification of deterministic solar forecasts
,”
Sol. Energy
210
,
20
(
2020
).
48.
Yang
,
D.
, “
Choice of clear-sky model in solar forecasting
,”
J. Renewable Sustainable Energy
12
,
02610
(
2020
).
You do not currently have access to this content.