The randomness and fluctuation of wind power cause difficulties in electric utilities operation and dispatch. Although the methods for simulating wind power time series have been studied by researchers for decades, methods designed for the single wind farm output or the aggregated output of multiple wind farms are inefficient in capturing the spatial dependence among regional multiple wind farms. Also, abnormal or missing data are quite common in the wind power field, which is often ignored by traditional multi-dimensional correlation modeling methods, resulting in being imprecise and unstable encountering the situation of missing data. In this paper, the discrete hidden Markov model (HMM) and regular vine copulas are applied to accurately reproduce the joint distribution of regional wind farms. The regular vine copulas can take various bivariate copulas as blocks to precisely and flexibly describe the dependence structures of multiple wind farm outputs, and using HMM, we were able to model transition probability for different dependence structures. Enough synthetic time series of multiple wind farms can be generated by the proposed method, and it is of great significance for the long-term scheduling of power systems. The effectiveness of the proposed method is tested using the datasets of five wind farms in Northwest China as a case. The simulation results prove that the proposed method can accurately model the dependence structures among multiple wind farms and statistical characteristics of power outputs, and are more robust when there are missing data in wind power records especially.

1.
P.
Pinson
,
C.
Chevallier
, and
G. N.
Kariniotakis
, “
Trading wind generation from short-term probabilistic forecasts of wind power
,”
IEEE Trans. Power Syst.
22
,
1148
1156
(
2007
).
2.
A.
Botterud
,
Z.
Zhou
,
J.
Wang
,
R. J.
Bessa
,
H.
Keko
,
J.
Sumaili
, and
V.
Miranda
, “
Wind power trading under uncertainty in LMP markets
,”
IEEE Trans. Power Syst.
27
,
894
903
(
2012
).
3.
E. M.
Constantinescu
,
V. M.
Zavala
,
M.
Rocklin
,
S.
Lee
, and
M.
Anitescu
, “
A computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation
,”
IEEE Trans. Power Syst.
26
,
431
441
(
2011
).
4.
A.
Botterud
,
Z.
Zhou
,
J.
Wang
,
J.
Sumaili
,
H.
Keko
,
J.
Mendes
,
R. J.
Bessa
, and
V.
Miranda
, “
Demand dispatch and probabilistic wind power forecasting in unit commitment and economic dispatch: A case study of illinois
,”
IEEE Trans. Sustainable Energy
4
,
250
261
(
2013
).
5.
H.
Bludszuweit
and
J. A.
Dominguez-Navarro
, “
A probabilistic method for energy storage sizing based on wind power forecast uncertainty
,”
IEEE Trans. Power Syst.
26
,
1651
1658
(
2011
).
6.
G.
Papaefthymiou
and
B.
Klockl
, “
MCMC for wind power simulation
,”
IEEE Trans. Energy Convers.
23
,
234
240
(
2008
).
7.
P.
Chen
,
T.
Pedersen
,
B.
Bak-Jensen
, and
Z.
Chen
, “
ARIMA-based time series model of stochastic wind power generation
,”
IEEE Trans. Power Syst.
25
,
667
676
(
2010
).
8.
D.
Bhaumik
,
D.
Crommelin
,
S.
Kapodistria
, and
B.
Zwart
, “
Hidden Markov models for wind farm power output
,”
IEEE Trans. Sustainable Energy
10
,
533
531
(
2019
).
9.
Y. H.
Pai Li
and
L. I. U.
Chun
, “
Modeling correlated power time series of multiple wind farms based on hidden Markov model
,” in
Proceedings of the CSEE
(
2019
), pp.
5683
5691
.
10.
H.
Wang
and
X.
Bai
, “
Adequacy assessment of generating systems incorporating wind, PV and energy storage
,” in Innovative Smart Grid Technologies-Asia (
2012
).
11.
A. S.
Dobakhshari
and
M.
Fotuhi-Firuzabad
, “
A reliability model of large wind farms for power system adequacy studies
,”
IEEE Trans. Energy Convers.
24
,
792
801
(
2009
).
12.
R.
Karki
and
R.
Billinton
, “
Reliability/cost implications of PV and wind energy utilization in small isolated power systems
,”
Energy Convers. IEEE Trans.
16
,
368
373
(
2001
).
13.
K.
Coughlin
,
A.
Murthi
, and
J.
Eto
, “
Multi-scale analysis of wind power and load time series data
,”
Renewable Energy
68
,
494
504
(
2014
).
14.
M. J.
Woods
,
C. J.
Russell
,
R. J.
Davy
, and
P. A.
Coppin
, “
Simulation of wind power at several locations using a measured time-series of wind speed
,”
IEEE Trans. Power Syst.
28
,
219
226
(
2013
).
15.
J.
Li
,
J.
Li
,
J.
Wen
,
S.
Cheng
,
H.
Xie
, and
C.
Yue
, “
Generating wind power time series based on its persistence and variation characteristics
,”
Sci. China Technol. Sci.
57
,
2475
2486
(
2014
).
16.
S. K.
Sim
,
P.
Maass
, and
P.
Lind
, “
Wind speed modeling by nested ARIMA processes
,”
Energies
12
,
69
(
2018
).
17.
L.
Pedro
,
V. T.
Luis
,
W.
Matthias
,
K.
Martin
, and
P.
Joachim
, “
Normal behaviour models for wind turbine vibrations: Comparison of neural networks and a stochastic approach
,”
Energies
10
,
1944
(
2017
).
18.
G.
Papaefthymiou
and
D.
Kurowicka
, “
Using copulas for modeling stochastic dependence in power system uncertainty analysis
,”
IEEE Trans. Power Syst.
24
,
40
49
(
2009
).
19.
D. D.
Le
,
G.
Gross
, and
A.
Berizzi
, “
Probabilistic modeling of multisite wind farm production for scenario-based applications
,”
IEEE Trans. Sustainable Energy
6
,
748
758
(
2015
).
20.
T.
Qijun
,
W.
Chengfu
,
L.
Jun
, and
L.
Zhengtang
, “
Research on modeling spatiotemporal correlation of wind power forecast error on multiple wind farms based on copula theory
,” in
2nd International Conference on Power and Renewable Energy (ICPRE)
(
2018
).
21.
E. W.
Frees
and
E. A.
Valdez
, “
Understanding relationships using copulas
,”
North Am. Actuarial J.
2
,
1
25
(
1998
).
22.
K.
Mahdi
and
J.
Wang
, “
Spatio-temporal graph deep neural network for short-term wind speed forecasting
,”
IEEE Trans. Sustainable Energy
10
,
670
681
(
2019
).
23.
A. S.
Qureshi
,
A.
Khan
,
A.
Zameer
, and
A.
Usman
, “
Wind power prediction using deep neural network based meta regression and transfer learning
,”
Appl. Soft Comput.
58
,
742
755
(
2017
).
24.
H. V.
Haghi
and
S.
Lotfifard
, “
Spatiotemporal modeling of wind generation for optimal energy storage sizing
,” in
Power Energy Society General Meeting
(
2015
).
25.
Z.
Wang
,
W.
Wang
,
C.
Liu
,
Z.
Wang
, and
Y.
Hou
, “
Probabilistic forecast for multiple wind farms based on regular vine copulas
,”
IEEE Trans. Power Syst.
33
,
578
589
(
2018
).
26.
T.
Starner
and
A.
Pentland
, “
Real-time american sign language recognition from video using hidden markov models
,” in
International Symposium on Computer Vision (
2002
).
27.
B. A.
Pardo
and
W. P.
Birmingham
, “
Modeling form for on-line following of musical performances
,” in
Proceedings, the Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference
,
Pittsburgh, Pennsylvania, USA
, July 9–13 (
2005
).
28.
C.
Czado
,
Analyzing Dependent Data with Vine Copulas, Lecture Notes in Statistics
(
Springer
,
Cham
,
2019
).
29.
C.
Czado
, “
Parameter estimation in simplified regular vine copulas
,” in
Analyzing Dependent Data with Vine Copulas
, Lecture Notes in Statistics (
Springer
,
Cham
,
2019
).
30.
G.
Pinson
and
P.
Kariniotakis
, “
Conditional prediction intervals of wind power generation
,”
IEEE Trans. Power Syst.
25
,
1845
1856
(
2010
).
31.
F.
Abegaz
,
I.
Gijbels
, and
N.
Veraverbeke
, “
Semiparametric estimation of conditional copulas
,”
J. Multivar. Anal.
110
,
43
(
2012
).
32.
T. M.
Erhardt
,
C.
Czado
, and
U.
Schepsmeier
, “
Spatial composite likelihood inference using local c-vines
,”
J. Multivar. Anal.
138
,
74
(
2015
).
33.
M.
Hofert
,
M.
MChler
, and
A. J.
Mcneil
, “
Likelihood inference for Archimedean copulas in high dimensions under known margins
,”
J. Multivar. Anal.
110
,
133
150
(
2012
).
34.
G. R.
Terrell
and
D. W.
Scott
, “
Variable Kernel density estimation
,”
Ann. Stats
20
,
1236
1265
(
1992
).
35.
U. Schepsmeier, J. Stoeber, E. C. Brechmann, et al. “Package ‘VineCopula’,” R package version 2.5 (2015).
36.
M.
Hofert
,
I.
Kojadinovic
,
M.
Maechler
,
J.
Yan
,
M. M.
Maechler
, and
M.
Suggests
, see http://ie.archive.ubuntu.com/disk1/disk1/cran.r-project.org/web/packages/copula/copula.pdf for “
Package ‘Copula'
(
2014
)”
37.
T.
Nagler
,
K.
Wen
, and
M. T.
Nagler
, “
Package ‘kdecopula'
,” (
2018
).
You do not currently have access to this content.