A data-driven approach is an alternative to extract general models for wind energy applications. A spatial sensitivity analysis is achieved using a probabilistic model to quantitatively identify the variability in performance due to individual parameters and visualize spatial distributions. Proper orthogonal decomposition results are combined with linear discriminant analysis under the clustering framework to present low-dimensional classifiers. Using the decomposition enables the system to be far away from ill-conditioned states. The optimal sensor locations are explicitly distributed in the transition region, where the velocity and Reynolds stresses relax toward a wake recovered state. With the optimal sensors, the cluster assignment and flow dynamics are obtained. There is an advantage in including more features in the reconstruction process to capture the slow and fast dynamics. Assessing the differences in the wake response and establishing the importance of spatial sensitivities are provided here for seeking accurate models. The bidirectional neural network is used to predict the fluctuating velocity of the considered sensors. The result of long–short term memory shows correlations of 92% between the real and predicted fluctuating velocities.

1.
S.
Boersma
,
B. M.
Doekemeijer
,
P. M.
Gebraad
,
P. A.
Fleming
,
J.
Annoni
,
A. K.
Scholbrock
,
J. A.
Frederik
, and
J.
van Wingerden
, “
A tutorial on control-oriented modeling and control of wind farms
,” in Proceedings of the
2017 American Control Conference (ACC)
(
IEEE
,
2017
), pp.
1
18
.
2.
N.
Ali
and
R. B.
Cal
, “
Data-driven modeling of the wake behind a wind turbine array
,”
J. Renewable Sustainable Energy
12
,
033304
(
2020
).
3.
R.
Scott
,
B.
Viggiano
,
T.
Dib
,
N.
Ali
,
M.
Hölling
,
J.
Peinke
, and
R. B.
Cal
, “
Wind turbine partial wake merging description and quantification
,”
Wind Energy
23
,
1610
1618
(
2020
).
4.
J.
Annoni
,
P.
Fleming
,
A.
Scholbrock
,
J.
Roadman
,
S.
Dana
,
C.
Adcock
,
F.
Porte-Agel
,
S.
Raach
,
F.
Haizmann
, and
D.
Schlipf
, “
Analysis of control-oriented wake modeling tools using lidar field results
,”
Wind Energy Sci.
3
(
2
),
819
831
(
2018
).
5.
J.
Annoni
,
T.
Taylor
,
C.
Bay
,
K.
Johnson
,
L.
Pao
,
P.
Fleming
, and
K.
Dykes
, “
Sparse-sensor placement for wind farm control
,”
J. Phys.: Conf. Ser.
1037
,
032019
(
2018
).
6.
N.
Ali
, “
Thermally (Un-) stratified wind plants: Stochastic and data-driven reduced order descriptions/modeling
,” Ph.D. thesis (
Portland State University
,
2018
).
7.
K.
Manohar
,
B. W.
Brunton
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns
,”
IEEE Control Syst. Mag.
38
,
63
86
(
2018
).
8.
N.
Vahabi
and
D. R.
Selviah
, “
Dimensionality reduction and pattern recognition of flow regime using acoustic data
,” in
Proceedings of SAI Intelligent Systems Conference
(
Springer
,
2018
), pp.
880
891
.
9.
S. L.
Brunton
and
J. N.
Kutz
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
(
Cambridge University Press
,
2019
).
10.
P.
Fleming
,
P.
Gebraad
,
J.
van Wingerden
,
S.
Lee
,
M.
Churchfield
,
A.
Scholbrock
,
J.
Michalakes
,
K.
Johnson
, and
P.
Moriarty
, “
SOWFA super-controller: A
high-fidelity tool for evaluating wind plant control approaches
,” Technical Report No. NREL/CP-5000-57175 (National Renewable Energy Laboratory (NREL), Golden, CO,
2013
).
11.
M.
Soleimanzadeh
,
R.
Wisniewski
, and
S.
Kanev
, “
An optimization framework for load and power distribution in wind farms
,”
J. Wind Eng. Ind. Aerodyn.
107–108
,
256
262
(
2012
).
12.
J. P.
Goit
and
J.
Meyers
, “
Optimal control of energy extraction in wind-farm boundary layers
,”
J. Fluid Mech.
768
,
5
50
(
2015
).
13.
J. P.
Goit
,
W.
Munters
, and
J.
Meyers
, “
Optimal coordinated control of power extraction in les of a wind farm with entrance effects
,”
Energies
9
,
29
(
2016
).
14.
W.
Munters
and
J.
Meyers
, “
Effect of wind turbine response time on optimal dynamic induction control of wind farms
,”
J. Phys.: Conf. Ser.
753
,
052007
(
2016
).
15.
A.
Keane
,
P. E. O.
Aguirre
,
H.
Ferchland
,
P.
Clive
, and
D.
Gallacher
, “
An analytical model for a full wind turbine wake
,”
J. Phys.: Conf. Ser.
753
,
032039
(
2016
).
16.
N. G.
Mortensen
,
L.
Landberg
,
I.
Troen
, and
E. L.
Petersen
,
Wind Atlas Analysis And Application Program (wasp)
(
IAEA
,
1998
), Vol. 1: Getting started.
17.
G. C.
Larsen
,
H. M.
Aagaard
,
F.
Bingöl
,
J.
Mann
,
S.
Ott
,
J. N.
Sørensen
,
V.
Okulov
,
N.
Troldborg
,
N. M.
Nielsen
,
K.
Thomsen
 et al, “
Dynamic wake meandering modeling
,”
Technical Report No. RISO-R-1607(EN)
,
2007
.
18.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind-turbine array boundary layers
,”
Phys. Fluids
22
,
015110
(
2010
).
19.
Y.-T.
Wu
and
F.
Porté-Agel
, “
Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parametrisations
,”
Boundary Layer Meteorol.
138
,
345
366
(
2011
).
20.
J. M.
Jonkman
,
M. L.
Buhl
, Jr.
 et al,
Fast User's Guide
(
National Renewable Energy Laboratory
,
Golden, CO
,
2005
), Vol.
365
, p.
366
.
21.
X. F.
Wang
,
G.
Xi
, and
Z. H.
Wang
, “
Aerodynamic optimization design of centrifugal compressor's impeller with kriging model
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
220
,
589
597
(
2006
).
22.
J.
Marden
,
S.
Ruben
, and
L.
Pao
, “
Surveying game theoretic approaches for wind farm optimization
,” AIAA Paper No. 2012-1154,
2012
.
23.
J. R.
Marden
,
S. D.
Ruben
, and
L. Y.
Pao
, “
A model-free approach to wind farm control using game theoretic methods
,”
IEEE Trans. Control Syst. Technol.
21
,
1207
1214
(
2013
).
24.
J.
Herrmann
and
G.
Bangga
, “
Multi-objective optimization of a thick blade root airfoil to improve the energy production of large wind turbines
,”
J. Renewable Sustainable Energy
11
,
043304
(
2019
).
25.
M.-B.
Radac
,
R.-C.
Roman
,
R.-E.
Precup
, and
E. M.
Petriu
, “
Data-driven model-free control of twin rotor aerodynamic systems: Algorithms and experiments
,” in Proceedings of the
2014 IEEE International Symposium on Intelligent Control (ISIC)
(
IEEE
,
2014
), pp.
1889
1894
.
26.
J.
Annoni
,
P.
Gebraad
, and
P.
Seiler
, “
Wind farm flow modeling using an input-output reduced-order model
,” in Proceedings of the
2016 American Control Conference (ACC)
(
IEEE
,
2016
), pp.
506
512
.
27.
B. W.
Brunton
,
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Sparse sensor placement optimization for classification
,”
SIAM J. Appl. Math.
76
,
2099
2122
(
2016
).
28.
E.
Kaiser
,
M.
Morzyński
,
G.
Daviller
,
J. N.
Kutz
,
B. W.
Brunton
, and
S. L.
Brunton
, “
Sparsity enabled cluster reduced-order models for control
,”
J. Comput. Phys.
352
,
388
409
(
2018
).
29.
E.
Kaiser
,
B. R.
Noack
,
L.
Cordier
,
A.
Spohn
,
M.
Segond
,
M.
Abel
,
G.
Daviller
,
J.
Östh
,
S.
Krajnović
, and
R. K.
Niven
, “
Cluster-based reduced-order modelling of a mixing layer
,”
J. Fluid Mech.
754
,
365
414
(
2014
).
30.
N.
Ali
,
B.
Viggiano
,
M.
Tutkun
, and
R. B.
Cal
, “
Cluster-based reduced-order descriptions of two phase flows
,”
Chem. Eng. Sci.
222
,
115660
(
2020
).
31.
N.
Ali
,
M.
Calaf
, and
R. B.
Cal
, “
Reduced-order modeling of the wake behind a single wind turbine
,” in Proceedings of the
iTi Conference on Turbulence
(
Springer
,
2018
), pp.
285
290
.
32.
J. R.
Norris
,
Markov Chains, Series 2
(
Cambridge University Press
,
1998
).
33.
M.
Grant
,
S.
Boyd
, and
Y.
Ye
,
Cvx: Matlab Software for Disciplined Convex Programming
(
CVX Research
,
2008
).
34.
E.
Bou-Zeid
,
C.
Meneveau
, and
M. B.
Parlange
, “
A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows
,”
Phys. Fluids
17
,
025105
025118
(
2005
).
35.
V.
Sharma
,
M.
Calaf
,
M.
Lehning
, and
M. B.
Parlange
, “
Time-adaptive wind turbine model for an LES framework
,”
Wind Energy
19
,
939
(
2016
).
36.
C.-H.
Moeng
, “
A large-Eddy-simulation model for the study of planetary boundary-layer turbulence
,”
J. Atmos. Sci.
41
(
13
),
2052
2062
(
1984
).
37.
J. D.
Albertson
and
M. B.
Parlange
, “
Natural integration of scalar fluxes from complex terrain
,”
Adv. Water Resour.
23
,
239
252
(
1999
).
38.
C.
Canuto
,
M.
Hussaini
,
A. M.
Quarteroni
,
J. A.
Thomas
 et al,
Spectral Methods in Fluid Dynamics
(
Springer Science and Business Media
,
2012
).
39.
N.
Hamilton
,
B.
Viggiano
,
M.
Calaf
,
M.
Tutkun
, and
R. B.
Cal
, “
A generalized framework for reduced-order modeling of a wind turbine wake
,”
Wind Energy
21
,
373
390
(
2018
).
40.
A.
Dutt
,
D. N.
Subramani
,
C. S.
Kulkarni
, and
F. J. P.
Lermusiaux
, “
Clustering of massive ensemble of vehicle trajectories in strong, dynamic and uncertain ocean flows
,” in Proceedings of the
OCEANS 2018 MTS/IEEE Charleston
(
IEEE
,
2018
), pp.
1
7
.
41.
C.
VerHulst
and
C.
Meneveau
, “
Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms
,”
Phys. Fluids
26
,
025113
(
2014
).
42.
X.-H.
Le
,
H. V.
Ho
,
G.
Lee
, and
S.
Jung
, “
Application of long short-term memory (lstm) neural network for flood forecasting
,”
Water
11
,
1387
(
2019
).
43.
M.
Schuster
and
K. K.
Paliwal
, “
Bidirectional recurrent neural networks
,”
IEEE Trans. Signal Process.
45
,
2673
2681
(
1997
).
44.
A.
Graves
and
J.
Schmidhuber
, “
Framewise phoneme classification with bidirectional lstm and other neural network architectures
,”
Neural Networks
18
,
602
610
(
2005
).
45.
B.
Singh
,
T. K.
Marks
,
M.
Jones
,
O.
Tuzel
, and
M.
Shao
, “
A multi-stream bi-directional recurrent neural network for fine-grained action detection
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
2016
, pp.
1961
1970
.
46.
P.
Nagabushanam
,
S. T.
George
, and
S.
Radha
, “
Eeg signal classification using lstm and improved neural network algorithms
,”
Soft Comput.
24
,
9981
9923
(
2020
).
47.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
444
(
2015
).
48.
J. L.
Proctor
,
S. L.
Brunton
, and
J. N.
Kutz
, “
Dynamic mode decomposition with control
,”
SIAM J. Appl. Dyn. Syst.
15
,
142
161
(
2016
).
49.
H.
Arbabi
and
I.
Mezić
, “
Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the koopman operator
,”
SIAM J. Appl. Dyn. Syst.
16
,
2096
2126
(
2017
).
50.
G. V.
Iungo
,
C.
Santoni-Ortiz
,
M.
Abkar
,
F.
Porté-Agel
,
M. A.
Rotea
, and
S.
Leonardi
, “
Data-driven reduced order model for prediction of wind turbine wakes
,”
J. Phys.: Conf. Ser.
625
,
012009
(
2015
).
51.
J.
Bossuyt
,
C.
Meneveau
, and
J.
Meyers
, “
Wind farm power fluctuations and spatial sampling of turbulent boundary layers
,”
Journal of Fluid Mechanics
823
,
329
344
(
2017
)
Cambridge University Press
.
52.
N.
Ali
,
N.
Hamilton
,
M.
Calaf
, and
R. B.
Cal
, “
Turbulence kinetic energy budget and conditional sampling of momentum, scalar, and intermittency fluxes in thermally stratified wind farms
,”
Journal of Turbulence
20
(
1
),
32
63
(
2019
)
Taylor & Francis
.
53.
N.
Ali
,
G.
Cortina
,
N.
Hamilton
,
M.
Calaf
, and
R. B.
Cal
, “
Turbulence characteristics of a thermally stratified wind turbine array boundary layer via proper orthogonal decomposition
,”
Journal of Fluid Mechanics
828
,
175
(
2017
)
Cambridge University Press
.
54.
N.
Ali
,
H. F.
Kadum
, and
R. B.
Cal
, “
Focused-based multifractal analysis of the wake in a wind turbine array utilizing proper orthogonal decomposition
,”
Journal of Renewable and Sustainable Energy
8
(
6
),
063306
(
2016
)
AIP Publishing LLC
.
55.
N.
Hamilton
,
M.
Tutkun
, and
R. B.
Cal
, “
Low-order representations of the canonical wind turbine array boundary layer via double proper orthogonal decomposition
,”
Physics of Fluids
28
(
2
),
025103
(
2016
)
AIP Publishing LLC
.
56.
N.
Hamilton
,
M.
Tutkun
, and
R. B.
Cal
, “
Wind turbine boundary layer arrays for Cartesian and staggered configurations: Part II, low-dimensional representations via the proper orthogonal decomposition
,”
Wind Energy
18
(
2
),
297
315
(
2015
)
Wiley Online Library
.
57.
E. H.
Camp
, and
R. B.
Cal
, “
Low-dimensional representations and anisotropy of model rotor versus porous disk wind turbine arrays
,”
Physical Review Fluids
4
(
2
),
024610
(
2019
)
APS
.
58.
N.
Ali
,
N.
Hamilton
,
D.
DeLucia
, and
R. B.
Cal
, “
Assessing spacing impact on coherent features in a wind turbine array boundary layer
,”
Wind Energy Science
3
(
1
),
43
56
(
2018
)
Copernicus GmbH
.
59.
N.
Ali
,
B.
Viggiano
,
M.
Tutkun
, and
R. B.
Cal
, “
Data-driven machine learning for accurate prediction and statistical quantification of two phase flow regimes
,”
Journal of Petroleum Science and Engineering
108488
(
2021
)
Elsevier
.
You do not currently have access to this content.