Illumination conditions are crucial factors affecting the growth and biosynthesis of microalgae. In this study, monochromatic red, blue, or the combined red and blue light illumination was applied to Dunaliella salina culture to study the effects of illumination on the growth and biocomponents productivity of the microalga D. salina. The monochromatic blue light (peak wavelength, 455 nm) did not significantly enhance D. salina growth but boosted the cellular contents of lipid, protein, and carbohydrate. Both cellular content and productivity of carotenoid produced by D. salina in the white light control were the highest compared to other monochromatic treatments. Interestingly, simultaneous application of red and blue light in various ratios showed a major boost not only on growth but also on cellular lipid content, and resulted in higher lipid productivity. This result is different from many published literatures reporting the enhancement of biomass or cellular lipid content individually. The optimal ratio of red and blue light was 4:3 (4 dose of red light to 3 dose of blue light), which significantly improved lipid productivity by 35.33% compared to the white light control. The result suggested a monochromatic red and blue light combination of illumination could be employed to increase the biomass yield as well as cellular lipid content of D. salina simultaneously for the production of biofuel.

1.
Arora
,
N.
,
Patel
,
A.
,
Pruthi
,
P. A.
, and
Pruthi
V.
, “
Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima, for biodiesel production
,”
Bioresour. Technol.
213
,
79
87
(
2016
).
2.
Ben Garali
,
S. M.
,
Sahraoui
,
I.
,
de la Iglesia
,
P.
,
Chalghaf
,
M.
,
Diogene
,
J.
,
Ksouri
,
J.
, and
Hlaili
,
A. S.
, “
Effects of nitrogen supply on Pseudo-nitzschia calliantha, and Pseudo-nitzschia cf. seriata: Field and laboratory experiments
,”
Ecotoxicology
25
(
6
),
1211
1225
(
2016
).
3.
Bligh
,
E. G.
and
Dyer
W. J.
, “
A rapid method of total lipid extraction and purification
,”
Can. J. Biochem. Physiol.
37
(
8
),
911
917
(
1959
).
4.
Borovkov
,
A. B.
,
Gudvilovich
,
I. N.
, and
Avsiyan
A. L.
, “
Scale-up of Dunaliella salina cultivation: From strain selection to open ponds
,”
J. Appl. Phycol.
32
,
1545
1558
(
2020
).
5.
Bradford
M.
, “
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
,”
Anal. Biochem.
72
,
248
254
(
1976
).
6.
Bredda
,
E. H.
,
de Silva
,
A. F.
,
Silva
,
M. B.
, and
da Ros
,
P. C. M.
, “
Mixture design as a potential tool in modeling the effect of light wavelength on Dunaliella salina cultivation: An alternative solution to increase microalgae lipid productivity for biodiesel production
,”
Prep. Biochem. Biotechnol.
50
(
4
),
379
389
(
2020
).
7.
Burak
,
H.
,
Dunbar
,
A.
, and
Gilmour
,
D. J.
, “
Enhancement of Dunaliella salina growth by using wavelength shifting dyes
,”
J. Appl. Phycol.
31
,
2791
2796
(
2019
).
8.
Dubois
,
M.
,
Gilles
,
K. A.
,
Hamilton
,
J. K.
,
Rebers
,
P. A.
, and
Smith
,
F.
, “
Colorimetric method for determination of sugars and related substances
,”
Anal. Chem.
28
,
350
356
(
1956
).
9.
Fu
,
W.
,
Guomundsson
,
O.
,
Paglia
,
G.
,
Herjolfsson
,
G.
,
Andresson
,
O. S.
,
Palsson
,
B. O.
, and
Brynjolfsson
,
S.
, “
Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution
,”
Appl. Microbiol. Biotechnol.
97
,
2395
2403
(
2013
).
10.
Gorai
,
T.
,
Katayama
,
T.
,
Obata
,
M.
,
Murata
,
A.
, and
Taguchi
,
S.
, “
Low blue light enhances growth rate, light absorption, and photosynthetic characteristics of four marine phytoplankton species
,”
J. Exp. Mar. Biol. Ecol.
459
,
87
95
(
2014
).
11.
Guillard
,
R. R. L.
and
Ryther
,
J. H.
, “
Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve
,”
Can. J. Microbiol.
8
,
229
239
(
1962
).
12.
Han
,
F.
,
Pei
,
H.
,
Hu
,
W.
,
Zhang
,
S.
,
Han
,
L.
, and
Ma
,
G. X.
, “
The feasibility of ultrasonic stimulation on microalgae for efficient lipid accumulation at the end of the logarithmic phase
,”
Algal Res.
16
,
189
194
(
2016
).
13.
Han
,
S. I.
,
Kim
,
S.
,
Lee
,
C.
, and
Choi
,
Y. E.
, “
Blue-red LED wavelength shifting strategy for enhancing beta-carotene production from halotolerant microalga, Dunaliella salina
,”
J. Microbiol.
57
(
2
),
101
106
(
2019
).
14.
Hosseini-Tafreshi
,
A.
and
Shariati
M.
, “
Dunaliella biotechnology: Methods and applications
,”
J. Appl. Microbiol.
107
,
14
35
(
2009
).
15.
Kang
,
Z.
,
Kim
,
B. H.
,
Ramanan
,
R.
,
Choi
,
J. E.
,
Yang
,
J. W.
,
Oh
,
H. M.
, and
Kim
,
H. S.
, “
A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength
,”
J. Microbiol. Biotechnol.
25
(
1
),
109
118
(
2015
).
16.
Kong
,
Q. X.
,
Zhu
,
L. Z.
, and
Shen
,
X. Y.
, “
The toxicity of naphthalene to marine Chlorella vulgaris under different nutrient conditions
,”
J. Hazard. Mater.
178
,
282
286
(
2010
).
17.
Lamers
,
P. P.
,
Janssen
,
M.
,
De Vos
,
R. C.
,
Bino
,
R. J.
, and
Wijffels
,
R. H.
, “
Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga
,”
J. Biotechnol.
162
,
21
27
(
2012
).
18.
Leonardos
,
N.
and
Geider
,
R. J.
, “
Responses of elemental and biochemical composition of Chaetoceros muelleri to growth under varying light and nitrate: Phosphate supply ratios and their influence on critical N: P
,”
Limnol. Oceanogr.
49
(
6
),
2105
2114
(
2004
).
19.
Li
,
Y. F.
,
Li
,
L.
,
Kiu
,
J. G.
, and
Qin
R. Y.
, “
Light absorption and growth response of Dunaliella under different light qualities
,”
J. Appl. Phycol.
32
(
2
),
1041
1052
(
2020a
).
20.
Li
,
Y. X.
,
Cai
,
X. H.
,
Gu
,
W. H.
, and
Wang
,
G. C.
, “
Transcriptome analysis of carotenoid biosynthesis in Dunaliella salina under red and blue light
,”
J. Oceanol. Limnol.
38
(
1
),
177
185
(
2020b
).
21.
Ma
,
X.
,
Liu
,
J.
,
Liu
,
B.
,
Chen
,
T. P.
,
Yang
,
B.
, and
Chen
,
F.
, “
Physiological and biochemical changes reveal stress-associated photosynthetic carbon partitioning into triacylglycerol in the oleaginous marine alga Nannochloropsis oculata
,”
Algal Res.
16
,
28
35
(
2016
).
22.
Markou
,
G.
and
Nerantzis
,
E.
, “
Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions
,”
Biotechnol. Adv.
31
,
1532
1542
(
2013
).
23.
Monte
,
J.
,
Ribeiro
,
C.
,
Parreira
,
C.
,
Costa
,
L.
,
Brive
,
L.
,
Casal
,
S.
,
Brazinha
,
C.
, and
Crespo
,
J. G.
, “
Biorefinery of Dunaliella salina: Sustainable recovery of carotenoids, polar lipids and glycerol
,”
Bioresour. Technol.
297
,
122509
(
2020
).
24.
Pereira
,
S.
and
Otero
,
A.
, “
Effect of light quality on carotenogenic and non-carotenogenic species of the genus Dunaliella under nitrogen deficiency
,”
Algal Res.
44
,
101725
(
2019
).
25.
Perez-Pazos
,
J. V.
and
Fernandez-Izquierdo
,
P.
, “
Synthesis of neutral lipids in Chlorella sp. under different light and carbonate conditions
,”
CT&F, Cienc., Tecnol. Futuro
4
(
4
),
47
57
(
2011
).
26.
Rebolledo
,
J.
,
Mejia-Lopez
,
J.
,
Garcia
,
G.
,
Rodriguez-Cordova
,
L.
, and
Saez-Navarrete
,
C.
, “
Novel photobioreactor design for the culture of Dunaliella tertiolecta: Impact of color in the growth of microalgae
,”
Bioresour. Technol.
289
,
121645
(
2019
).
27.
Sujitha
,
B. S.
and
Muthu
,
A.
, “
Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition
,”
Bioresour. Technol.
213
,
198
203
(
2016
).
28.
Tang
,
H.
,
Abunasser
,
N.
,
Garcia
,
M.
,
Chen
,
M.
,
Ng
,
K. Y. S.
, and
Salley
,
S. O.
, “
Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel
,”
Appl. Energy
88
,
3324
3330
(
2011
).
29.
Ueno
,
Y.
,
Aikawa
,
S.
,
Kondo
,
A.
, and
Akimoto
,
S.
, “
Adaptation of light-harvesting functions of unicellular green algae to different light qualities
,”
Photosynth. Res.
139
,
145
154
(
2019
).
30.
Wan
,
C.
,
Bai
,
F. W.
, and
Zhao
,
X. Q.
, “
Effects of nitrogen concentration and media replacement on cell growth and lipid production of oleaginous marine microalga Nannochloropsis oceanica DUT01
,”
Biochem. Eng. J.
78
,
32
38
(
2013
).
You do not currently have access to this content.