Microencapsulated phase change materials (MicroPCMs) can be incorporated into a traditional thermal insulation material, such as a foam, to form a new temperature-adaptable material. Polyurea/polyurethane (PU) as the encapsulating shell makes the MicroPCMs more compatible with the polyurethane foam matrix. This study focuses on increasing the thermal storage abilities and reliabilities of the PU-based MicroPCMs as well as improving the temperature-regulating properties of PU foams treated with these materials by incorporating lauryl methacrylate (LMA) and polyols into the MicroPCM particles. Paraffin was successfully microencapsulated by a PU/PLMA hybrid shell via staged polymerization of jointly using interfacial and suspension-like polymerization. PU foams integrating the as-prepared MicroPCMs were produced. The thermal storage abilities as well as working reliabilities of the MicroPCMs were improved when PLMA was introduced in the shells and were further enhanced when they were modified by polyols. The PU foams containing MicroPCMs with polyol-modified hybrid shells have better mechanical properties and temperature-regulating properties than do the foams containing MicroPCMs with unmodified shells. In conclusion, MicroPCMs with polyol-modified PU/PLMA hybrid shells possess promising application prospects for energy efficient buildings and advanced cold-chain logistics systems.

1.
P.
Zhang
,
X.
Xiao
, and
Z. W.
Ma
, “
A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement
,”
Appl. Energy.
165
,
472
510
(
2016
).
2.
D.
Cano
,
C.
Funéz
,
L.
Rodriguez
,
J. L.
Valverde
, and
L.
Sanchez-Silva
, “
Experimental investigation of a thermal storage system using phase change materials
,”
Appl. Therm. Eng.
107
,
264
270
(
2016
).
3.
G.
Song
,
S.
Ma
,
G.
Tang
,
Z.
Yin
, and
X.
Wang
, “
Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide
,”
Energy
35
,
2179
2183
(
2010
).
4.
M.
Jurkowska
and
I.
Szczygieł
, “
Review on properties of microencapsulated phase change materials slurries (mPCMS)
,”
Appl. Therm. Eng.
98
,
365
373
(
2016
).
5.
L.
Zhao
,
J.
Luo
,
H.
Wang
,
G.
Song
, and
G.
Tang
, “
Self-assembly fabrication of microencapsulated n-octadecane with natural silk fibroin shell for thermal-regulating textiles
,”
Appl. Therm. Eng.
99
,
495
501
(
2016
).
6.
S.
Sami
,
S. M.
Sadrameli
, and
N.
Etesami
, “
Thermal properties optimization of microencapsulated a renewable and non-toxic phase change material with a polystyrene shell for thermal energy storage systems
,”
Appl. Therm. Eng.
130
,
1416
1424
(
2018
).
7.
S.
Jegadheeswaran
and
S. D.
Pohekar
, “
Performance enhancement in latent heat thermal storage system: A review
,”
Renewable Sustainable Energy Rev.
13
,
2225
2244
(
2009
).
8.
A.
Serrano
,
A. M.
Borreguero
,
I.
Garrido
,
J. F.
Rodríguez
, and
M.
Carmona
, “
Reducing heat loss through the building envelope by using polyurethane foams containing thermoregulating microcapsules
,”
Appl. Therm. Eng.
103
,
226
232
(
2016
).
9.
M.
You
,
X.
Zhang
,
J.
Wang
, and
X.
Wang
, “
Polyurethane foam containing microencapsulated phase-change materials with styrene–divinybenzene co-polymer shells
,”
J. Mater. Sci.
44
,
3141
3147
(
2009
).
10.
C.
Yang
,
L.
Fischer
,
S.
Maranda
, and
J.
Worlitschek
, “
Rigid polyurethane foams incorporated with phase change materials: A state-of-the-art review and future research pathways
,”
Energy Build.
87
,
25
36
(
2015
).
11.
X.
Geng
,
W.
Li
,
Y.
Wang
,
J.
Lu
,
J.
Wang
,
N.
Wang
,
J.
Li
, and
X.
Zhang
, “
Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing
,”
Appl. Energy
217
,
281
294
(
2018
).
12.
E. M.
Fayyad
,
M. A.
Almaadeed
, and
A.
Jones
, “
Preparation and characterization of urea–formaldehyde microcapsules filled with paraffin oil
,”
Polym. Bull.
73
,
631
646
(
2016
).
13.
W.
Li
,
G.
Song
,
G.
Tang
,
X.
Chu
,
S.
Ma
, and
C.
Liu
, “
Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell
,”
Energy
36
,
785
791
(
2011
).
14.
L.
Sánchez-Silva
,
J.
Tsavalas
,
D.
Sundberg
,
P.
Sánchez
, and
J. F.
Rodriguez
, “
Synthesis and characterization of paraffin wax microcapsules with acrylic-based polymer shells
,”
Ind. Eng. Chem. Res.
49
,
12204
12211
(
2010
).
15.
C.
Alkan
,
A.
Sari
, and
A.
Karaipekli
, “
Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage
,”
Energy Convers. Manag.
52
,
687
692
(
2011
).
16.
W.
Li
,
R.
Zhang
,
N.
Jiang
,
X.
Tang
,
H.
Shi
,
X.
Zhang
,
Y.
Zhang
,
L.
Dong
, and
N.
Zhang
, “
Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage
,”
Energy
57
,
607
614
(
2013
).
17.
W.
Li
,
G.
Song
,
S.
Li
,
Y.
Yao
, and
G.
Tang
, “
Preparation and characterization of novel MicroPCMs (microencapsulated phase-change materials) with hybrid shells via the polymerization of two alkoxy silanes
,”
Energy
70
,
298
306
(
2014
).
18.
P.
Chaiyasat
,
S.
Noppalit
,
M.
Okubo
, and
A.
Chaiyasat
, “
Innovative synthesis of high performance poly(methyl methacrylate) microcapsules with encapsulated heat storage material by microsuspension iodine transfer polymerization (ms ITP)
,”
Sol Energy Mater Sol Cells
157
,
996
1003
(
2016
).
19.
K.
Pielichowska
,
M.
Nowak
,
P.
Szatkowski
, and
B.
Macherzyńska
, “
The influence of chain extender on properties of polyurethane-based phase change materials modified with graphene
,”
Appl Energy
162
,
1024
1033
(
2016
).
20.
F.
Salaün
,
G.
Bedek
,
E.
Devaux
,
D.
Dupont
, and
L.
Gengembre
, “
Microencapsulation of a cooling agent by interfacial polymerization: Influence of the parameters of encapsulation on poly(urethane–urea) microparticles characteristics
,”
J Membr. Sci.
370
,
23
33
(
2011
).
21.
M. N. A.
Hawlader
,
M. S.
Uddin
, and
M. M.
Khin
, “
Microencapsulated PCM thermal-energy storage system
,”
Appl Energy
74
,
195
202
(
2003
).
22.
H.
Zhang
and
X.
Wang
, “
Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation
,”
Sol Energy Mater Sol Cells.
93
,
1366
1376
(
2009
).
23.
L.
Chen
,
L.
Xu
,
H.
Shang
, and
Z.
Zhang
, “
Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system
,”
Energy Convers. Manag.
50
,
723
729
(
2009
).
24.
G.
Gao
,
C.
Qian
, and
M.
Gao
, “
Preparation and characterization of hexadecane microcapsule with polyurea–melamine formaldehyde resin shell materials
,”
Chin. Chem. Lett.
21
,
533
537
(
2010
).
25.
A.
Aydın
, “
In situ preparation and characterization of encapsulated high-chain fatty acid ester-based phase change material (PCM) in poly(urethane-urea) by using amino alcohol
,”
Chem. Eng. J.
231
,
477
483
(
2013
).
26.
S.
Lu
,
J.
Xing
,
Z.
Zhang
, and
G.
Jia
, “
Preparation and characterization of polyurea/polyurethane double-Shell microcapsules containing butyl stearate through interfacial polymerization
,”
J. Appl. Polym. Sci.
121
,
3377
3383
(
2011
).
27.
Y.
Ma
,
X.
Chu
,
G.
Tang
, and
Y.
Yao
, “
The effect of different soft segments on the formation and properties of binary core microencapsulated phase change materials with polyurea/polyurethane double shell
,”
J. Colloid Interface Sci.
392
,
407
41429
(
2013
).
28.
W.
Li
,
X.
Zhanga
,
X.
Wang
,
G.
Tang
, and
H.
Shi
, “
Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage
,”
Energy
38
,
249
254
(
2012
).
29.
X.
Qiu
,
L.
Lu
,
J.
Wang
,
G.
Tang
, and
G.
Song
, “
Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell
,”
Thermochim. Acta.
620
,
10
17
(
2015
).
30.
X.
Qiu
,
W.
Li
,
G.
Song
,
X.
Chu
, and
G.
Tang
, “
Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage
,”
Energy
46
,
188
199
(
2012
).
31.
S.
Zhan
,
S.
Chen
,
L.
Chen
, and
W.
Hou
, “
Preparation and characterization of polyurea microencapsulated phase change material by interfacial polycondensation method
,”
Powder Technol.
292
,
217
222
(
2016
).
32.
J.
Su
,
L.
Wang
,
L.
Ren
,
Z.
Huang
, and
X.
Meng
, “
Preparation and characterization of polyurethane microPCMs containing n-octadecane with styrene-maleic anhydride as a surfactant by interfacial polycondensation
,”
J. Appl. Polym. Sci.
102
,
4996
5006
(
2006
).
33.
X.
Qiu
,
W.
Li
,
G.
Song
,
X.
Chu
, and
G.
Tang
, “
Fabrication and characterization of microencapsulated n-octadecane with different crosslinked methylmethacrylate-based polymer shells
,”
Sol Energy Mater. Sol Cells
98
,
283
293
(
2012
).
34.
X.
Lan
,
Z.
Tan
, and
G.
Zou
, “
Microencapsulation of n-eicosane as energy storage material
,”
Chin. J. Chem.
22
,
411
414
(
2010
).
35.
H.
Wang
,
L.
Zhao
,
G.
Song
,
G.
Tang
, and
X.
Shi
, “
Organic-inorganic hybrid shell microencapsulated phase change materialsprepared from SiO2/TiC-stabilized pickering emulsion polymerization
,”
Sol Energy Mater Sol Cells
175
,
102
110
(
2018
).
36.
X.
Qiu
,
L.
Lu
,
J.
Wang
,
G.
Tang
, and
G.
Song
, “
Preparation and characterization of microencapsulated n-octadecane as phase change material with different n-butyl methacrylate-based copolymer shells
,”
Sol Energy Mater Sol Cells
128
,
102
111
(
2014
).
37.
A.
Borreguero
,
J.
Valverde
,
T.
Peijs
, and
J.
Rodríguez
, “
Manuel Carmona Characterization of rigid polyurethane foams containing microencapsulated Rubitherm®RT27. Part I
,”
J. Mater. Sci.
45
,
4462
4469
(
2010
).
You do not currently have access to this content.