Due to their intermittent nature, the use of renewable energy sources has faced the challenges of power insecurity and low efficiency. Recently, fuel cells (FCs) have become a potential choice for backup-power generation in remote microgrids due to their reduced maintenance needs and long lifecycle. However, the efficiency of hydrogen FCs as backup power needs to be improved. The efficiency is related to system sizing and operational techniques. Thus, this paper proposes an efficient energy management strategy and optimal configuration models based on a hybrid system including photovoltaics (PVs) and hydrogen FCs to achieve a high operational efficiency and optimize the system configuration. The system model is built, and an energy management strategy is proposed first. This strategy determines when the PV and FC supply power to a load under various conditions. Proper sizing of the sub-components in the PV/FC hybrid system also plays an essential role in ensuring continuous power flow. To ensure power quality, the hybrid system configuration is estimated using a systematic method without affecting the power quality to minimize residual power losses. In addition, various essential simulations are performed to verify the proposed model. The results indicate that the total efficiency of the system can reach 47.9%.

2.
See https://www.iea.org/reports/renewables-2019 for Renewables 2019, IEA.
3.
H.
Zhang
,
B.
He
,
Y.
Guan
,
M.
Ma
,
Y.
Li
, and
S.
Song
, “
Assessing the potential for global solar energy utilization
,” in
International Geoscience and Remote Sensing Symposium (IGARSS) (
2017
).
4.
See https://www.irena.org/publications/2016/Jun/The-Power-to-Change-Solar-and-Wind-Cost-Reduction-Potential-to-2025 for
Renewable power generation cost, solar cost reduction potential to 2025
, International Renewable Energy Agency (IRENA),
2020
.
5.
T.
Sarkar
,
A.
Bhattacharjee
,
K.
Mukhopadhyay
,
K.
Das Bhattacharya
, and
H.
Saha
, “
Energy non-availability in distribution grids with heavy penetration of solar power: Assessment and mitigation through solar smoother
,”
Energies
11
,
709
(
2018
).
6.
R.
Sarrias-Mena
,
L. M.
Fernández-Ramírez
,
C. A.
García-Vázquez
, and
F.
Jurado
, “
Electrolyzer models for hydrogen production from wind energy systems
,”
Int. J. Hydrogen Energy
40
,
2927
2938
(
2015
).
7.
T.
Ma
and
M. S.
Javed
, “
Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource
,”
Energy Convers. Manage.
182
,
178
190
(
2019
).
8.
M.
Bagheri
,
S. H.
Delbari
,
M.
Pakzadmanesh
, and
C. A.
Kennedy
, “
City-integrated renewable energy design for low-carbon and climate-resilient communities
,”
Appl. Energy
239
,
1212
1225
(
2019
).
9.
Y.
Yang
,
S.
Bremner
,
C.
Menictas
, and
M.
Kay
, “
Battery energy storage system size determination in renewable energy systems: A review
,”
Renewable Sustainable Energy Rev.
91
,
109
125
(
2018
).
10.
G.
Ren
,
G.
Ma
, and
N.
Cong
, “
Review of electrical energy storage system for vehicular applications
,”
Renewable Sustainable Energy Rev.
41
,
225
236
(
2015
).
11.
M.
Faisal
,
M. A.
Hannan
,
P. J.
Ker
,
A.
Hussain
,
M.
Bin Mansor
, and
F.
Blaabjerg
, “
Review of energy storage system technologies in microgrid applications: Issues and challenges
,”
IEEE Access
6
,
35143
35164
(
2018
).
12.
T.
Wilberforce
,
A.
Alaswad
,
A.
Palumbo
,
M.
Dassisti
, and
A. G.
Olabi
, “
Advances in stationary and portable fuel cell applications
,”
Int. J. Hydrogen Energy
41
,
16509
16522
(
2016
).
13.
N.
Bizon
,
A. G.
Mazare
,
L. M.
Ionescu
, and
F. M.
Enescu
, “
Optimization of the proton exchange membrane fuel cell hybrid power system for residential buildings
,”
Energy Convers. Manage.
163
,
22
37
(
2018
).
14.
F.
Sorgulu
and
I.
Dincer
, “
A renewable source based hydrogen energy system for residential applications
,”
Int. J. Hydrogen Energy
43
,
5842
5851
(
2018
).
15.
F.
Alvarez-Mendoza
,
P.
Bacher
,
H.
Madsen
, and
C.
Angeles-Camacho
, “
Stochastic model of wind-fuel cell for a semi-dispatchable power generation
,”
Appl. Energy
193
,
139
148
(
2017
).
16.
J. P.
Torreglosa
,
P.
García
,
L. M.
Fernández
, and
F.
Jurado
, “
Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system
,”
Renewable Energy
74
,
326
336
(
2015
).
17.
L.
Olatomiwa
,
S.
Mekhilef
,
M. S.
Ismail
, and
M.
Moghavvemi
, “
Energy management strategies in hybrid renewable energy systems: A review
,”
Renewable Sustainable Energy Rev.
62
,
821
835
(
2016
).
18.
M.
Paulitschke
,
T.
Bocklisch
, and
M.
Böttiger
, “
Sizing algorithm for a PV-battery-H2-hybrid system employing particle swarm optimization
,”
Energy Procedia
73
,
154
162
(
2015
).
19.
N.
Manhas
,
G. D.
Yadav
, and
Y.
Gadhauli
, “
Power management of PV, BESS and fuel cell based hybrid power system
,” Int. Res. J. Eng. Technol.
3
,
1012
1017
(
2016
).
20.
S.
Nasri
,
S.
Ben Slama
,
I.
Yahyaoui
,
B.
Zafar
, and
A.
Cherif
, “
Autonomous hybrid system and coordinated intelligent management approach in power system operation and control using hydrogen storage
,”
Int. J. Hydrogen Energy
42
,
9511
9523
(
2017
).
21.
Y.
Han
,
W.
Chen
,
Q.
Li
,
H.
Yang
,
F.
Zare
, and
Y.
Zheng
, “
Two-level energy management strategy for PV-Fuel cell-battery-based DC microgrid
,”
Int. J. Hydrogen Energy
44
,
19395
19404
(
2019
).
22.
V.
Prema
and
K. U.
Rao
, “
Predictive models for power management of a hybird microgrid—A review
,” in
International Conference on Advances in Energy Conversion Technologies
(
2014
), pp.
7
12
.
23.
A.
Elgammal
and
M.
Elnagger
, “
Energy management in smart grids for the integration of hybrid wind–PV–FC–battery renewable energy resources using multi-objective particle swarm optimisation (MOPSO)
,”
J. Eng.
2018
,
1806
1816
.
24.
A.
Tabanjat
,
M.
Becherif
,
D.
Hissel
, and
H. S.
Ramadan
, “
Energy management hypothesis for hybrid power system of H2/WT/PV/GMT via AI techniques
,”
Int. J. Hydrogen Energy
43
,
3527
3541
(
2018
).
25.
L. G.
Marín
 et al, “
Hierarchical energy management system for microgrid operation based on robust model predictive control
,”
Energies
12
,
4453
4419
(
2019
).
26.
P.
Tian
,
X.
Xiao
,
K.
Wang
, and
R.
Ding
, “
A hierarchical optimization for microgrid community economic operation
,”
IEEE Trans. Smart Grid
7
,
2230
2241
(
2016
).
27.
X.
Jin
,
J.
Wu
,
Y.
Mu
,
M.
Wang
,
X.
Xu
, and
H.
Jia
, “
Hierarchical microgrid energy management in an office building
,”
Appl. Energy
208
,
480
494
(
2017
).
28.
Y.
Han
,
G.
Zhang
,
Q.
Li
,
Z.
You
,
W.
Chen
, and
H.
Liu
, “
Hierarchical energy management for PV/hydrogen/battery island DC microgrid
,”
Int. J. Hydrogen Energy
4
,
5507
5516
(
2019
).
29.
X.
Feng
,
A.
Shekhar
,
F.
Yang
,
R. E.
Hebner
, and
P.
Bauer
, “
Comparison of hierarchical control and distributed control for microgrid
,”
Electr. Power Compon. Syst.
45
,
1043
1056
(
2017
).
30.
A.
Maleki
and
F.
Pourfayaz
, “
Sizing of stand-alone photovoltaic/wind/diesel system with battery and fuel cell storage devices by harmony search algorithm
,”
J. Energy Storage
2
,
30
42
(
2015
).
31.
M. S.
Behzadi
and
M.
Niasati
, “
Comparative performance analysis of a hybrid PV/FC/battery stand-alone system using different power management strategies and sizing approaches
,”
Int. J. Hydrogen Energy
40
,
538
548
(
2015
).
32.
W.
Zhang
,
A.
Maleki
,
M. A.
Rosen
, and
J.
Liu
, “
Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm
,”
Energy Convers. Manage.
180
,
609
621
(
2019
).
33.
A.
Maleki
, “
Optimal operation of a grid-connected fuel cell based combined heat and power systems using particle swarm optimisation for residential sector
,”
Int. J. Ambient Energy
0
,
1
20
(
2019
).
34.
A.
Maleki
and
M. A.
Rosen
, “
Design of a cost-effective on-grid hybrid wind–hydrogen based CHP system using a modified heuristic approach
,”
Int. J. Hydrogen Energy
42
,
15973
15989
(
2017
).
35.
A.
Maleki
, “
Design and optimization of autonomous solar-wind-reverse osmosis desalination systems coupling battery and hydrogen energy storage by an improved bee algorithm
,”
Desalination
435
,
221
234
(
2018
).
36.
D. T.
Pham
and
M.
Castellani
, “
A comparative study of the bees algorithm as a tool for function optimisation
,”
Cogent Eng.
2
,
1
28
(
2015
).
37.
P.
Ahmadi
,
I.
Dincer
, and
M. A.
Rosen
, “
Transient thermal performance assessment of a hybrid solar-fuel cell system in Toronto, Canada
,”
Int. J. Hydrogen Energy
40
,
7846
7854
(
2015
).
38.
H.
Chen
,
C.
Yang
,
K.
Deng
,
N.
Zhou
, and
H.
Wu
, “
Multi-objective optimization of the hybrid wind/solar/fuel cell distributed generation system using Hammersley sequence sampling
,”
Int. J. Hydrogen Energy
42
,
7836
7846
(
2017
).
39.
S.
Zafar
and
I.
Dincer
, “
Energy, exergy and exergoeconomic analyses of a combined renewable energy system for residential applications
,”
Energy Build.
71
,
68
79
(
2014
).
40.
S. M.
Sichilalu
,
H.
Tazvinga
, and
X.
Xia
, “
Integrated energy management of grid-tied-pv-fuel cell hybrid system
,”
Energy Procedia
103
,
111
116
(
2016
).
41.
C.
Ghenai
,
T.
Salameh
, and
A.
Merabet
, “
Technico-economic analysis of off grid solar PV/Fuel cell energy system for residential community in desert region
,”
Int. J. Hydrogen Energy
45
,
11460
(
2018
).
42.
S.
Vadi
,
S.
Padmanaban
,
R.
Bayindir
,
F.
Blaabjerg
, and
L.
Mihet-Popa
, “
A review on optimization and control methods used to provide transient stability in microgrids
,”
Energies
12
,
3582
3520
(
2019
).
43.
A.
Cano
,
F.
Jurado
,
H.
Sánchez
,
L. M.
Fernández
, and
M.
Castañeda
, “
Optimal sizing of stand-alone hybrid systems based on PV/WT/FC by using several methodologies
,”
J. Energy Inst.
87
,
330
340
(
2014
).
44.
W.
Zhang
,
A.
Maleki
,
M. A.
Rosen
, and
J.
Liu
, “
Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage
,”
Energy
163
,
191
207
(
2018
).
45.
W.
Dong
,
Y.
Li
, and
J.
Xiang
, “
Optimal sizing of a stand-alone hybrid power system based on battery/hydrogen with an improved ant colony optimization
,”
Energies
9
,
785
(
2016
).
46.
S.
Nema
,
R. K.
Nema
, and
G.
Agnihotri
, “
Matlab/simulink based study of photovoltaic cells/module/array and their experimental verification
,”
Int. J. Energy Environ.
1
,
2076
2909
(
2010
).
47.
H.
Yatimi
,
E.
Aroudam
,
M.
Louzazni
,
A.
Diouri
,
N.
Khachani
, and
M.
Alami Talbi
, “
Modeling and simulation of photovoltaic module using MATLAB/SIMULINK
,”
Int. J. Chem. Environ. Eng.
8
,
3
7
(
2014
).
48.
J.
Lagorse
,
M. G.
Simões
,
A.
Miraoui
, and
P.
Costerg
, “
Energy cost analysis of a solar-hydrogen hybrid energy system for stand-alone applications
,”
Int. J. Hydrogen Energy
33
,
2871
2879
(
2008
).
49.
A. S.
Tijani
,
N. A. B.
Yusup
, and
A. H. A.
Rahim
, “
Mathematical modelling and simulation analysis of advanced alkaline electrolyzer system for hydrogen production
,”
Procedia Technol.
15
,
798
806
(
2014
).
50.
Y.
Sanath
,
K. D.
Silva
, and
P. H.
Middleton
, “
Design of an alkaline electrolysis stack
,” M. Sc. thesis (
University of Agder
,
2017
).
51.
M. J.
Khan
and
M. T.
Iqbal
, “
Analysis of a small wind-hydrogen stand-alone hybrid energy system
,”
Appl. Energy
86
,
2429
2442
(
2009
).
52.
C. H.
Li
,
X. J.
Zhu
,
G. Y.
Cao
,
S.
Sui
, and
M. R.
Hu
, “
Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology
,”
Renewable Energy
34
,
815
826
(
2009
).
53.
P. T.
Moseley
, “Book review:
Fuel cell systems explained: James Larminie, Andrew Dicks (Eds.), Wiley Chichester, Weinhein, New York, Brisbane, Singapore and Toronto, ISBN 0-471449026-1
,”
J. Power Sources
93
,
285
(
2001
).
54.
M.
Eroglu
,
E.
Dursun
,
S.
Sevencan
,
J.
Song
,
S.
Yazici
, and
O.
Kilic
, “
A mobile renewable house using PV/wind/fuel cell hybrid power system
,”
Int. J. Hydrogen Energy
36
,
7985
7992
(
2011
).
55.
E.
Arnaud
, “
Hydrogen systems modeling, analysis and optimization
,” M.Phil. thesis (
University of Strathclyde
,
2009
).
56.
R.
Geetha
,
M.M.
Vijayalakshmi
, and
E.
Natarajan
. “
Modeling and Simulation Assessment of Solar Photovoltaic/Thermal Hybrid Liquid System Using TRNSYS
,”
Appl. Mech. Mater.
813–814
,
700
706
(
2015
).
57.
S. A.
Klein
and
W. A.
Beckman
, “
TRNSYS 16: A transient system simulation program: mathematical reference
,”
5
,
389
396
(
2007
).
58.
D.
Brockett
,
D.
Fridley
,
J.
Lin
, and
J.
Lin
, “
A tale of five cities: The China residential energy consumption survey
,” in
ACEEE Summer Study
(
2002
), pp.
29
40
.
You do not currently have access to this content.