The hybrid organic–inorganic halide perovskite solar cells (PSCs) have attracted considerable attention in the photovoltaic community during the last decade due to unique properties, such as high absorption coefficient, solutionable fabrication, and compatibility with roll-to-roll technology. A certified power conversion efficiency of PSCs as high as 25.2% has been obtained, approaching the levels of silicon solar cells, copper indium gallium selenide (CIGS), and cadmium telluride (CdTe) thin-film solar cells. However, the device area of a PSC is one of the biggest challenges for the commercialize applications. To fabricate large-area PSCs, various fabrication methods have been proposed, including spray coating, slot-die coating, vacuum deposition, and blade coating. Here, the blade-coating technique progress for the PSC fabrication has been reviewed. Moreover, the optimized ways during the solution fabrication process, the efficient strategy for improving the perovskite films' morphology, have also been summarized in this work. In the last part, the challenges and opportunities of PSC commercialization have also been proposed.

1.
S.
Chu
,
Y.
Cui
, and
N.
Liu
, “
The path towards sustainable energy
,”
Nat. Mater.
16
,
16
22
(
2017
).
2.
M. A.
Green
,
K.
Emery
,
Y.
Hishikawa
,
W.
Warta
,
E. D.
Dunlop
,
D. H.
Levi
, and
A.
Hobailli
, “
Solar cell efficiency tables (version 49)
,”
Prog. Photovoltaics Res. Appl.
25
,
3
13
(
2017
).
3.
L.
Qiu
,
L. K.
Ono
, and
Y.
Qi
, “
Advances and challenges to the commercialization of organic–inorganic halide perovskite solar cell technology
,”
Mater. Today Energy
7
,
169
189
(
2018
).
4.
M.
Graetzel
,
R. A.
Janssen
,
D. B.
Mitzi
, and
E. H.
Sargent
, “
Materials interface engineering for solution-processed photovoltaics
,”
Nature
488
,
304
316
(
2012
).
5.
B. E.
Hardin
,
H. J.
Snaith
, and
M. D.
McGehee
, “
The renaissance of dye-sensitized solar cells
,”
Nat. Photonics
6
,
162
169
(
2012
).
6.
M. A.
Green
, “
The path to 25% silicon solar cell efficiency: History of silicon cell evolution
,”
Prog. Photovoltaics
17
(
3
),
183
189
(
2009
).
7.
C.
Wang
,
C.
Zhang
,
S.
Tong
,
J.
Shen
,
C.
Wang
,
Y.
Li
,
S.
Xiao
,
J.
He
,
J.
Zhang
,
Y.
Gao
, and
J.
Yang
, “
Air-induced high-quality CH3NH3PbI3 thin film for efficient planar heterojunction perovskite solar cells
,”
J. Phys. Chem. C
121
,
6575
6580
(
2017
).
8.
C.
Wang
,
Y.
Li
,
C.
Zhang
,
L.
Shi
,
S.
Tong
,
B.
Guo
,
J.
Zhang
,
J.
He
,
Y.
Gao
,
C.
Suc
, and
J.
Yang
, “
Enhancing the performance of planar hetero junction perovskite solar cells using stable semiquinone and amine radical modified hole transport layer
,”
J. Power Sources
390
,
134
141
(
2018
).
9.
C.
Wang
,
C.
Zhang
,
S.
Wang
,
G.
Liu
,
H.
Xia
,
S.
Tong
,
J.
He
,
D.
Niu
,
C.
Zhou
,
K.
Ding
,
Y.
Gao
, and
J.
Yang
, “
Low-temperature processed, efficient, and highly reproducible cesium-doped triple cation perovskite planar heterojunction solar cells
,”
Sol. RRL
2
,
1700209
(
2018
).
10.
Z.
Ren
,
M.
Zhu
,
X.
Li
, and
C.
Dong
, “
An isopropanol-assisted fabrication strategy of pinhole-free perovskite films in air for efficient and stable planar perovskite solar cells
,”
J. Power Sources
363
,
317
326
(
2017
).
11.
Z.
Xiao
,
Y.
Yuan
,
Y.
Shao
,
Q.
Wang
,
Q.
Dong
,
C.
Bi
,
“P.
Sharma
,
A.
Gruverman
, and
J.
Huang
, “
Giant witchable photovoltaic effect in organometal trihalide perovskite devices
,”
Nat. Mater.
14
,
193
198
(
2015
).
12.
Q.
Hu
,
H.
Wu
,
J.
Sun
,
D.
Yan
,
Y.
Gao
, and
J.
Yang
, “
Large area perovs kite nanowire arrays fabricated by large-scale roll-toroll micro-gravure printing and doctor blading
,”
Nanoscale
8
,
5350
5357
(
2016
).
13.
A.
Kojim
,
K.
Teshima
,
Y.
Shirai
, and
T.
Miyasaka
, “
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
,”
J. Am. Chem. Soc.
131
(
17
),
6050
6051
(
2009
).
14.
P.
Liu
,
X.
Liu
,
L.
Lyu
,
H.
Xie
,
H.
Zhang
,
D.
Niu
,
H.
Huang
,
C.
Bi
,
Z.
Xiao
,
J.
Huang
, and
Y.
Gao
, “
Interfacial electronic structure at the CH3NH3PbI3/MoOx interface
,”
Appl. Phys. Lett.
106
,
193903
193908
(
2015
).
15.
Y.
Shao
,
Z.
Xiao
,
C.
Bi
,
Y.
Yuan
, and
J.
Huang
, “
Origin and elim ination of photocurrent hysteresis by fullerene passivation in ch3nh3pbi3 planar hetero junction solar cells
,”
Nat. Commun.
5
,
5784
5790
(
2014
).
16.
C.
Bi
,
Q.
Wang
,
Y.
Yuan
,
Z.
Xiao
, and
J.
Huang
, “
Nonwetting surface driven high aspect ratio crystalline grain growth for efficient hybrid perovskite solar cells
,”
Nat. Commun.
6
,
7747
7753
(
2015
).
17.
R.
Wu
,
B.
Yang
,
J.
Xiong
,
C.
Cao
,
Y.
Huang
,
F.
Wu
,
J.
Sun
,
C.
Zhou
,
H.
Huang
, and
J.
Yang
, “
Dependence of device performance on the thickness of compact TiO2 layer in perovskite/TiO2 planar heterojunction solar cells
,”
J. Renewable Sustainable Energy
7
,
043105
043112
(
2015
).
18.
R.
Wu
,
J.
Yang
,
J.
Xiong
,
P.
Liu
,
C.
Zhou
,
H.
Huang
,
Y.
Gao
, and
B.
Yang
, “
Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage
,”
Org. Electron.
26
,
265
272
(
2015
).
19.
NREL, see https://www.nrel.gov/pv/cell-efficiency.html, for “
National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart
(
2019
)”
20.
Y.
Wang
,
Y.
Zhang
,
P.
Zhang
, and
W.
Zhang
, “
High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3
,”
Phys. Chem. Chem. Phys.
17
,
11516
11520
(
2015
).
21.
S. D.
Stranks
,
G. E.
Eperon
,
G.
Grancini
,
C.
Memelaou
,
M. J. P.
Alcocer
,
T.
Leijtens
,
L. M.
Herz
,
A.
Petrozza
, and
H. J.
Snaith
, “
Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber
,”
Science
342
,
341
344
(
2013
).
22.
Q.
Dong
,
Y.
Fang
,
Y.
Shao
,
P.
Mulligan
,
J.
Qiu
,
L.
Cao
, and
J.
Huang
, “
Electron-hole diffusion lengths > 175 mm in solution-grown CH3NH3PbI3 single crystals
,”
Science
347
,
967
970
(
2015
).
23.
Y.
Yu
,
C.
Wang
,
C. R.
Grice
,
N.
Shrestha
,
J.
Chen
,
D.
Zhao
,
W.
Liao
,
A. J.
Cimaroli
,
P. J.
Roland
,
R. J.
Ellingson
, and
Y.
Yan
, “
Improving the performance of formamidinium and cesium lead triiodide perovskite solar cells using lead thiocyanate additives
,”
ChemSusChem
9
,
3288
3297
(
2016
).
24.
P. W.
Liang
,
C.
Chueh
,
X.
Xin
,
F.
Zuo
,
S. T.
Williams
,
C. Y.
Liao
, and
A. K.-Y.
Jen
, “
High-performance planar-heterojunction solar cells based on ternary halid e large-band-gap perovskites
,”
Adv. Energy Mater.
5
,
1400960
(
2015
).
25.
H. S.
Kim
,
C. R.
Lee
,
J. H.
Im
,
K. B.
Lee
,
T.
Moehl
,
A.
Marchioro
,
S. J.
Moon
,
R. H.
Baker
,
J. H.
Yum
,
J. E.
Moser
,
M.
Grätzel
, and
N.
Park
, “
Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%
,”
Sci. Rep.
2
,
591
(
2012
).
26.
J.
Burschka
,
N.
Pellet
,
S. J.
Moon
,
R.
Humphry-Baker
,
P.
Gao
,
M. K.
Nazeeruddin
, and
M.
Grätzel
, “
Sequential deposition as a route to high-performance perovskite-sensitized solar cells
,”
Nature
499
,
316
319
(
2013
).
27.
A.
Mei
,
X.
Li
,
L.
Liu
,
Z.
Ku
,
T.
Liu
,
Y.
Rong
,
M.
Xu
,
M.
Hu
,
J.
Chen
,
Y.
Yang
,
M.
Gratzel
, and
H.
Han
, “
A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability
,”
Science
345
,
295
302
(
2014
).
28.
K.
Wang
,
C.
Liu
,
P.
Du
,
J.
Zheng
, and
Xg
Gong
, “
Bulk heterojunction perovskite hybrid solar cells with large fill factor
,”
Energy Environ. Sci.
8
,
1245
1255
(
2015
).
29.
M.
Xiao
,
F.
Huang
,
W.
Huang
,
Y.
Dkhissi
,
Y.
Zhu
,
J.
Etheridge
,
A.
Gra-Weale
,
U.
Bach
,
Y.
Cheng
, and
L.
Spiccia
, “
A fast deposition-crystalliza tion procedure for highly efficient lead iodide perovskite thin-film solar cells
,”
Angew. Chem., Int. Ed.
126
,
10056
10061
(
2014
).
30.
M.
Stolterfoht
,
C. M.
Wolff
,
Y.
Amir
,
A.
Paulke
,
L. P.
Toro
,
P.
Caprioglio
, and
D.
Neher
, “
Approaching the fill factor Shockley-Queisser limit in stable, dopant-free triple cation perovskite solar cells
,”
Energy Environ. Sci.
10
,
1530
1539
(
2017
).
31.
S.
Chen
,
S.
Yang
,
H.
Sun
,
L.
Zhang
,
J.
Peng
,
Z.
Liang
, and
Z.
Wang
, “
Enhanced interfacial electron transfer of inverted perovskite solar cells by introduction of CoSe into the electron-transporting-layer
,”
J. Power Sources
353
,
123
130
(
2017
).
32.
N.
Jeon
,
J. H.
Noh
,
Y. C.
Kim
,
W.
Yang
,
S.
Ryu
, and
S.
Seok
, “
Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells
,”
Nat. Mater.
13
,
897
(
2014
).
33.
W.
Zhang
,
S.
Pathak
,
N.
Sakai
,
T.
Stergiopoulos
,
P. K.
Nayak
,
N. K.
Noe
,
A. A.
Haghighirad
,
V. M.
Burlakov
,
D. W.
deQuilettes
,
A.
Sadhanala
,
W.
Li
, and
D.
Li
,
Nat. Commun.
6
,
10030
10038
(
2015
).
34.
Z.
Xiao
,
C.
Bi
,
Y.
Shao
,
Q.
Dong
,
Q.
Wang
,
Y.
Yuan
,
C.
Wang
,
Y.
Gao
, and
J.
Huang
, “
Efficient, high yield perovskite photovoltaic devices grown by a-processed precursor stacking layers
,”
Energy Environ. Sci.
7
,
2619
2623
(
2014
).
35.
N.
Tripathi
,
Y.
Shirai
,
M.
Yanagida
,
A.
Karen
, and
K.
Miyano
, “
Novel surface passivation technique for low-temperature solution processed perovskite PV cells
,”
ACS Appl. Mater. Interfaces
8
,
4644
4650
(
2016
).
36.
Y.
Wu
,
A.
Islam
,
X.
Yang
,
C.
Qin
,
J.
Liu
,
K.
Zhang
,
W.
Peng
, and
L.
Han
, “
Retarding the crystallization of PbI2 for highly reproducible planar- structured perovskite solar cells via sequential deposition
,”
Energy Environ. Sci.
7
,
2934
2938
(
2014
).
37.
D.
Vak
,
S. S.
Kim
,
J.
Jo
,
S.
Oh
,
S.-I.
Na
,
J.
Kim
, and
D. Y.
Kim
, “
Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation
,”
Appl. Phys. Lett.
91
,
081102
(
2007
).
38.
A. T.
Barrows
,
A. J.
Pearson
,
C. K.
Kwak
,
A. D. F.
Dunbar
,
A. R.
“Buckleya
, and
D. G.
Lidzey
, “
Efficient planar heterojunction mixedhalide perovskite solar cells deposited via spray-deposition
,”
Energy Environ. Sci.
7
,
2944
2950
(
2014
).
39.
D. K.
Mohamad
,
J.
Griffin
,
C.
Bracher
,
A. T.
Barrows
, and
D. G.
Lidzey
, “
Spray-cast multilayer organometal perovskite solar cells fabricated in air
,”
Adv. Energy Mater.
6
,
1600994
(
2016
).
40.
H.
Huang
,
J.
Shi
,
L.
Zhu
,
D.
Li
,
Y.
Luo
, and
Q.
Meng
, “
Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell
,”
Nano Energy
27
,
352
358
(
2016
).
41.
S.
Lilliu
,
J.
Griffin
,
A. T.
Barrows
,
M.
Alsari
,
B.
Curzadd
,
T. G.
Dane
,
O.
Bikondoa
,
J. E.
Macdonaldf
, and
D. G.
Lidzeya
, “
Grain rotation and lattice deformation during perovskite spray coating and annealing probedin situ by GI-WAXS
,”
CrystEngComm
18
,
5448
5455
(
2016
).
42.
C.
Rocks
,
V.
Svrcek
,
P.
Maguire
, and
D.
Mariotti
, “
Understanding surface chemistry during MAPbI3 spray deposition and its effect on photovoltaic performance
,”
J. Mater. Chem. C
5
,
902
916
(
2017
).
43.
K. J.
Ruschak
, “
Limiting flow in a pre-metered coating device
,”
Chem. Eng. Sci.
31
,
1057
1060
(
1976
).
44.
G.
Cotella
,
J.
Baker
,
D.
Worsley
,
F. D.
Rossi
,
C. P.
Pearce
,
M.
Carnie
, and
T.
Watson
, “
One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications
,”
Sol. Energy Mater. Sol. Cell
159
,
362
369
(
2017
).
45.
J. E.
Kim
,
Y.
Jung
,
Y. J.
Heo
,
K.
Hwang
,
T.
Qin
,
D.
Kim
, and
D.
Vak
, “
Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition
,”
Sol. Energy Mater. Sol. Cell
179
,
80
86
(
2018
).
46.
T.
Bu
,
J.
Li
,
F.
Zheng
,
W.
Chen
,
X.
Wen
,
Z.
Ku
,
Y.
Peng
,
J.
Zhong
,
Y. B.
Cheng
, and
F.
Huang
, “
Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module
,”
Nat. Commun.
9
,
4609
(
2018
).
47.
K. K.
Sears
,
M.
Fievez
,
M.
Gao
,
H. C.
Weerasinghe
,
C. D.
Easton
, and
D.
Vak
, “
ITO-free flexible perovskite solar cells based on roll-to-roll, slot-die coated silver nanowire electrodes
,”
Sol. RRL
1
,
1700059
(
2017
).
48.
M.
Era
,
T.
Hattori
,
T.
Taira
, and
T.
Tsutsui
, “
Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition
,”
Chem. Mater.
9
,
8
10
(
1997
).
49.
M.
Liu
,
M. B.
Johnston
, and
H. J.
Snaith
, “
Efficient planar heterojunction perovskite solar cells by vapour deposition
,”
Nature
501
,
395
398
(
2013
).
50.
C.
Momblona
,
L.
Gilescrig
,
E.
Bandiello
,
E. M.
Hutter
,
M.
Sessolo
,
K.
Lederer
,
J.
Blochwitznimoth
, and
H. J.
Bolink
, “
Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers
,”
Energy Environ. Sci.
9
,
3456
3463
(
2016
).
51.
J.
Avila
,
C.
Momblona
,
P. P.
Boix
,
M.
Sessolo
,
M.
Anaya
,
G.
Lozano
,
K.
Vandewal
,
H.
Miguez
, and
H. J.
Bolink
, “
High voltage vacuum-deposited CH3NH3PbI3–CH3NH3PbI3 tandem solar cells
,”
Energy Environ. Sci.
11
,
3292
3297
(
2018
).
52.
D.
Forgacs
,
L.
Gilescrig
,
D.
Perezdelrey
,
C.
Momblona
,
J.
Werner
,
B.
Niesen
,
C.
Ballif
,
M.
Sessolo
, and
H. J.
Bolink
, “
Efficient monolithic perovskite/perovskite tandem solar cells
,”
Adv. Energy Mater.
7
,
1602121
(
2017
).
53.
A. T.
Mallajosyu
,
K.
Fernando
,
S.
Bhatt
,
A.
Singh
,
B. W.
Alphenaar
,
J.
Blancon
,
W.
Nie
,
G.
Gupta
, and
A. D.
Mohite
, “
Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment
,”
Appl. Mater. Today
3
,
96
102
(
2016
).
54.
Y.
Deng
,
X.
Zheng
,
Y.
Bai
,
Q.
Wang
,
J.
Zhao
, and
J.
Huang
, “
Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules
,”
Nat. Energy
3
,
560
566
(
2018
).
55.
Q.
Wang
,
M.
Eslamian
,
T.
Zhao
, and
A. K. Y.
Jen
, “
Achieving fully blade-coated ambient-processed perovskite solar cells by controlling the blade-coater temperature
,”
IEEE J. Photovoltaics
8
(
6
),
1662
1669
(
2018
).
56.
J.
Li
,
R.
Munir
,
Y.
Fan
,
T.
Niu
,
Y.
Liu
,
Y.
Zhong
,
Z.
Yang
,
Y.
Tian
,
B.
Liu
,
J.
Sun
,
D.-M.
Smilgies
,
S.
Thoroddsen
,
A.
Amassian
,
K.
Zhao
, and
S.
Liu
, “
Phase transition control for high-performance blade-coated perovskite solar cells
,”
Joule
2
,
1313
1330
(
2018
).
57.
H.
Wu
,
C.
Zhang
,
K.
Ding
,
L.
Wang
,
Y.
Gao
, and
J.
Yang
, “
Efficient planar heterojunction perovskite solar cells fabricated by in-situ thermal-annealing doctor blading in ambient condition
,”
Org. Electron.
45
,
302
307
(
2017
).
58.
K.
Hwang
,
Y. S.
Jung
,
Y. J.
Heo
,
F. H.
Scholes
,
S. E.
Watkins
,
J.
Subbiah
,
D. J.
Jones
,
D. Y.
Kim
, and
D.
Vak
, “
Toward large scale roll-to-roll production of fully printed perovskite solar cells
,”
Adv. Mater.
27
(
7
),
1241
1247
(
2015
).
59.
C.
Li
,
J.
Yin
,
R.
Chen
,
X.
Lv
,
X.
Feng
,
Y.
Wu
, and
J.
Cao
, “
Monoammonium porphyrin for blade-coating stable large-area perovskite solar cells with >18% efficiency
,”
J. Am. Chem. Soc.
141
,
6345
6351
(
2019
).
60.
Y.
Deng
,
E.
Peng
,
Y.
Shao
,
Z.
Xiao
,
Q.
Dong
, and
J.
Huang
, “
Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers
,”
Energy Environ. Sci.
8
,
1544
1550
(
2015
).
61.
B.
Chen
,
Z. J.
Yu
,
S.
Manzoor
,
S.
Wang
,
W.
Weig
,
Z.
Yu
,
G.
Yang
,
Z.
Ni
,
X.
Dai
,
Z. C.
Holman
, and
J.
Huang
, “
Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells
,”
Joule
4
,
850
815
(
2020
).
62.
X.
Dai
,
Y.
Deng
,
C. H.
Van Brackle
,
S.
Chen
,
P. N.
Rudd
,
X.
Xiao
,
Y.
Lin
,
B.
Chen
, and
J.
Huang
, “
Scalable fabrication of effcient perovskite solar modules on flexible glass substrates
,”
Adv. Energy Mater.
10
,
1903108
(
2020
).
63.
S.
Razza
,
F. D.
Giacomo
,
F.
Matteocci
,
L.
Cina
,
A. L.
Palma
,
S.
C
,
P.
Cameron
,
A.
D'Epifanio
,
S.
Licoccia
,
A.
Reale
,
T. M.
Brown
, and
A. D.
Carlo
, “
Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process
,”
J. Power Sources
277
,
286
291
(
2015
).
64.
M.
He
,
B.
Li
,
X.
Cui
,
B.
Jiang
,
Y.
He
,
Y.
Chen
,
D.
Nei
,
P.
Szymanski
,
M. A.
EI-Sayed
,
J.
Huang
, and
Z.
Lin
, “
Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells
,”
Nat. Commun.
8
,
16045
16055
(
2016
).
65.
Z.
Yang
,
C. C.
Chueh
,
F.
Zuo
,
J. H.
Kim
,
P. W.
Liang
, and
A. K.-Y.
Jen
, “
High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition
,”
Adv. Energy Mater.
5
,
1500328
(
2015
).
66.
J.
Yin
,
Y.
Lin
,
C.
Zhang
,
J.
Li
, and
N.
Zheng
, “
Growth-dynamic-controllable rapid crystallization boosts the perovskite photovoltaics'robust preparation: From blade coating to painting
,”
ACS Appl. Mater. Interfaces
10
,
23103
23111
(
2018
).
67.
S.
Sidhik
,
D.
Esparza
,
A.
Martínez-Benítez
,
T.
Lopez-Luke
,
R.
Carriles
, and
E. D. l
Rosa
, “
Improved performance of mesoscopic perovskite solar cell using an accelerated crystalline formation method
,”
J. Power Sources
365
,
169
178
(
2017
).
68.
N. J.
Jeon
,
J. H.
Noh
,
W. S.
Yang
,
Y. C.
Kim
,
S.
Ryu
,
J.
Seo
, and
S. I.
Seok
, “
Compositional engineering of perovskite materials for high-performance solar cells
,”
Nature
517
,
476
480
(
2015
).
69.
Z.
Yang
,
A.
Rajagopal
, and
A. K.-Y.
Jen
, “
Ideal bandgap organic–inorganic hybrid perovskite solar cells
,”
Adv. Mater.
29
,
1704418
1704424
(
2017
).
70.
J. W.
Lee
,
D. H.
Kim
,
H. S.
Kim
,
S. W.
Seo
,
S. M.
Cho
, and
N. G.
Park
, “
Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell
,”
Adv. Energy Mater.
5
,
1501310
1501318
(
2015
).
71.
M.
Yang
,
Z.
Li
,
M. O.
Reese
,
O. G.
Reid
,
D. H.
Kim
,
S.
Sio
,
T. R.
Klein
,
Y.
Yan
,
J. J.
Berry
,
M. F. A. M.
Hest
, and
K.
Zhu
, “
Perovskite ink with wide processing window for scalable high-effciency solar cells
,”
Nat. Energy
2
,
17038
(
2017
).
72.
Z.
Bi
,
X.
Rodríguez-Martínez
,
C.
Arand
,
E.
Pascual-SanJose
,
AoR.
Goni
,
M. C.
Quiles
,
X.
Xu
, and
A.
Guerrero
, “
Defect tolerant perovskite solar cells from blade coated non-toxic solvents
,”
J. Mater. Chem. A
6
,
19085
(
2018
).
73.
K.
Mahmood
,
M.
Hameed
,
F.
Rehman
,
A.
Khalid
,
M.
Imran
, and
M. T.
Mehran
, “
A multifunctional blade-coated ZnO seed layer for high-efficiency perovskite solar cells
,”
Appl. Phys. A
125
,
83
87
(
2019
).
74.
W.
Wu
,
Q.
Wang
,
Y.
Fang
,
Y.
Shao
,
S.
Tang
,
Y.
Deng
,
H.
Lu
,
Y.
Liu
,
T.
Li
,
Z.
Yang
,
A.
Gruverman
, and
J.
Huang
, “
Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells
,”
Nat. Commun.
9
,
1625
(
2018
).
75.
C. Y.
Chang
,
B. C.
Tsai
,
Y. C.
Hsiao
,
Y. C.
Huang
, and
C. S.
Tsao
, “
High-performance printable hybrid perovskite solar cells with an easily accessible n-doped fullerene as a cathode interfacial layer
,”
PhysChemChemPhys
18
,
31836
(
2016
).
76.
N.
Li
,
F.
Xu
,
Z.
Qiu
,
J.
Liu
,
X.
Wan
,
X.
Zhua
,
H.
Yu
,
C.
Li
,
Y.
Liu
, and
B.
Cao
, “
Sealing the domain boundaries and defects passivation by Poly(acrylic acid) for scalable blading of efficient perovskite solar cells
,”
J. Power Sources
426
,
188
196
(
2019
).
77.
Y.
Lin
,
L.
Shen
,
J.
Dai
,
Y.
Deng
,
Y.
Wu
,
Y.
Bai
,
X.
Zheng
,
J.
Wang
,
Y.
Fang
,
H.
Wei
,
W.
Ma
,
X.
Zeng
,
X.
Zhan
, and
J.
Huang
, “
π‐conjugated Lewis base: Efficient trap-passivation and charge-extraction for hybrid perovskite solar cells
,”
Adv. Mater.
29
,
1604545
(
2017
).
78.
X.
Bao
,
J.
Wang
,
Y.
Li
,
D.
Zhu
,
Y.
Wu
,
P.
Guo
,
X.
Wang
,
Y.
Zhang
,
J.
Wang
,
H. L.
Yip
, and
R.
Yang
, “
Interface engineering of a compatible PEDOT derivative bilayer for high-performance inverted perovskite solar cells
,”
Adv. Mater. Interfaces
4
,
1600948
(
2017
).
79.
C.
Sun
,
Z.
Wu
,
H. L.
Yip
,
H.
Zhang
,
X.
Jiang
,
Q.
Xue
,
Z.
Hu
,
Z.
Hu
,
Y.
Shen
,
M.
Wang
,
F.
Huang
, and
Y.
Cao
, “
Solar cells: Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planar-heterojunction perovskite solar Cells
,”
Adv. Energy Mater.
6
,
1501534
(
2016
).
80.
H.
Chen
,
W.
Fu
,
C.
Huang
,
Z.
Zhang
,
S.
Li
,
F.
Ding
,
M.
Shi
,
C.
Li
,
A.-Y.
Jen
, and
H.
Chen
, “
Molecular engineered hole-extraction materials to enable dopant-free, efficient p-i-n perovskite solar cells
,”
Adv. Energy Mater.
7
,
1700012
(
2017
).
81.
N. K.
Noel
,
A.
Abate
,
S. D.
Stranks
,
E. S.
Parrott
,
V. M.
Burlakov
,
A.
Goriely
, and
H. J.
Snaith
, “
Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites
,”
ACS Nano
8
,
9815
9821
(
2014
).
82.
X.
Zheng
,
Y.
Deng
,
B.
Chen
,
H.
Wei
,
X.
Xiao
,
Y.
Fang
,
Y.
Lin
,
Z.
Yu
,
Y.
Liu
,
Q.
Wang
, and
J.
Huang
, “
Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and effcient perovskite solar cells
,”
Adv. Mater.
30
,
1803428
(
2018
).
83.
R.
Wu
,
B.
Yang
,
C.
Zhang
,
Y.
Huang
,
Y.
Cui
,
P.
Liu
,
C.
Zhou
,
Y.
Hao
,
Y.
Gao
, and
J.
Yang
, “
Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods
,”
J. Phys. Chem. C
120
,
6996
7004
(
2016
).
84.
L.
Lu
,
Z.
Luo
,
T.
Xu
, and
L.
Yu
, “
Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells
,”
Nano Lett.
13
,
59
64
(
2013
).
85.
Y.
Deng
,
Q.
Dong
,
C.
Bi
,
Y.
Yuan
, and
J.
Huang
, “
Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active layer
,”
Adv. Energy Mater.
6
,
1600372
(
2016
).
86.
S.
Tang
,
Y.
Deng
,
X.
Zheng
,
Y.
Bai
,
Y.
Fang
,
Q.
Dong
,
H.
Wei
, and
J.
Huang
, “
Composition engineering in doctor-blading of perovskite solar cells
,”
Adv. Energy Mater.
7
,
1700302
(
2017
).
87.
B.
Chen
,
Z.
Yu
,
K.
Liu
,
X.
Zheng
,
Y.
Liu
,
J.
Shi
,
D.
Spronk
,
P. N.
Rudd
,
Z.
Holman
, and
J.
Huang
, “
Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%
,”
Joule
3
,
177
190
(
2019
).
88.
K. A.
Bush
,
S.
Manzoor
,
S.
Manzoor
,
K.
Frohna
,
Z. J.
Yu
,
J. A.
Raiford
,
A. F.
Palmstrom
,
H. P.
Wang
,
R.
Prasanna
,
S. F.
Bent
,
Z. C.
Holman
, and
M. D.
McGehee
, “
Minimizing current and voltage losses to reach 25%-efficient monolithic two-terminal perovskite-silicon tandem solar cells
,”
ACS Energy Lett.
3
,
2173
2180
(
2018
).
89.
M.
Jost
,
E.
Kohnen
,
A. B.
Moralesvilches
,
B.
Lipovsek
,
K.
Jager
,
B.
Macco
,
A.
Alashouri
,
J.
Krc
,
L.
Korte
,
B.
Rech
,
R.
Schlatmann
,
M.
Topic
,
B.
Stannowski
, and
S.
Albrecht
, “
Textured interfaces in monolithic perovskite/silicon tandem solar cells: Advanced light management for improved efficiency and energy yield
,”
Energy Environ. Sci.
11
,
3511
3523
(
2018
).
90.
L.
Mazzarella
,
Y. H.
Lin
,
S.
Kirner
,
A. B. M.
Vilches
,
L. K.
Steve Albrecht
,
E.
Crossland
,
B.
Stannowski
,
C.
Case
, and
H. J.
Snaith
, “
Rutger Schlatmann. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%
,”
Adv. Energy Mater.
9
,
1803241
(
2019
).
91.
E.
Kohnen
,
M.
Jost
,
A. B.
Moralesvilches
,
P.
Tockhorn
,
A.
Alashouri
,
B.
Macco
,
L.
Kegelmann
,
L.
Korte
,
B.
Rech
,
R.
Schlatmann
,
B.
Stannowski
, and
S.
Albrecht
, “
Highly efficient monolithic perovskite silicon tandem solar cells: Analyzing the influence of current mismatch on device performance
,”
Sustainable Energy Fuels
3
,
1995
2005
(
2019
).
92.
D. H.
Kim
,
J. B.
Whitaker
,
Z.
Li
,
M. F. A. M.
van Hest
, and
K.
Zhu
, “
Outlook and challenges of perovskite solar cells toward terawatt-scale photovoltaic module technology
,”
Joule
2
,
1437
1451
(
2018
).
93.
S.
Il Seok
,
M.
Grätzel
, and
N. G.
Park
, “
Methodologies toward highly effcient perovskite solar cells
,”
Small.
14
,
1704177
(
2018
).
94.
A.
Rajagopal
,
K.
Yao
, and
A. K.-Y.
Jen
, “
Toward perovskite solar cell commerci alization: A perspective and research roadmap based on interfacial engineering
,”
Adv. Mater.
30
,
1800455
(
2018
).
95.
Y.
Rong
,
Y.
Hu
,
A.
Mei
,
H.
Tan
,
M. I.
Saidaminov
,
S.
Il Seok
,
M. D.
McGehee
, and
E. H.
Sargent
, “
Challenges for commercializing perovskite solar cells
,”
Science
361
,
eaat8235
1220
(
2018
).
96.
M.
Yang
,
D. H.
Kim
,
T. R.
Klein
,
Z.
Li
,
M. O.
Reese
,
B. J. T.
Villers
,
J. J.
Berry
,
M. F. A. M.
van Hest
, and
K.
Zhu
, “
Highly efficient perovskite solar modules by scalable fabrication and interconnection optimization
,”
ACS Energy Lett.
3
,
322
328
(
2018
).
97.
E.
Calabrò
,
F.
Matteocci
,
A. L.
Palma
,
L.
Vesce
,
B.
Taheri
,
L.
Carlini
,
I.
Pis
,
S.
Nappini
,
J.
Dagar
,
C.
Battocchio
,
T. M.
Brown
, and
A. D.
Carlo
, “
Low temperature, solution-processed perovskite solar cells and modules with an aperture area efficiency of 11%
,”
Sol. Energy Mater. Sol. Cells
185
,
136
144
(
2018
).
98.
F.
Matteocci
,
L.
Vesce
,
F. U.
Kosasih
,
L. A.
Castriotta
,
S.
Cacovich
,
A. L.
Palma
,
G.
Divitini
,
C.
Ducati
, and
A. D.
Carlo
, “
Fabrication and morphological characterization of high-efficiency blade-coated perovs kite solar modules
,”
ACS Appl. Mater. Interfaces
11
,
25195
25204
(
2019
).
99.
M.
Saliba
,
T.
Matsui
,
K.
Domanski
,
J.
Seo
,
A.
Ummadisingu
,
S. M.
Zakeeruddin
,
J.
Correabaena
,
W.
Tress
,
A.
Abate
,
A.
Hagfeldt
, and
M.
Gratzel
, “
Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
,”
Science
354
,
206
209
(
2016
).
100.
Y.
Hu
,
S.
Si
,
A.
Mei
,
Y.
Rong
,
H.
Liu
,
X.
Li
, and
H.
Han
, “
Stable large-area (10 × 10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency
,”
Sol. RRL
1
,
1600019
(
2017
).
101.
Y.
Lin
,
Y.
Bai
,
Y.
Fang
,
Z.
Chen
,
S.
Yang
,
X.
Zheng
,
S.
Tang
,
Y.
Liu
,
J.
Zhao
, and
J.
Huang
, “
Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures
,”
J. Phys. Chem. Lett.
9
,
654
658
(
2018
).
102.
R.
Cheacharoen
,
N.
Rolston
,
D.
Harwood
,
K. A.
Bush
,
R. H.
Dauskardt
, and
M. D.
Mcgehee
, “
Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling
,”
Energy Environ. Sci.
11
,
144
150
(
2018
).
103.
K.
Domanski
,
B.
Roose
,
T.
Matsui
,
M.
Saliba
,
S.
Turrencruz
,
J.
Correabaena
,
C. R.
Carmona
,
G.
Richardson
,
J. M.
Foster
,
F. D.
Angelis
,
J. M.
Ball
,
A.
Petrozza
,
N.
Mine
,
M. K.
Nazeeruddin
,
W.
Tress
, and
M.
Gratzel
, “
Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells
,”
Energy Environ. Sci.
10
,
604
613
(
2017
).
104.
J. H.
Kim
,
S. T.
Williams
,
N.
Cho
,
C.
Chueh
, and
A. K. Y.
Jen
, “
Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating
,”
Adv. Energy Mater.
5
,
1401229
(
2015
).
You do not currently have access to this content.