Many governments and institutions are advocating for higher renewable energy deployment to lower their carbon footprint and mitigate the effects of climate change. Cornell University instituted the “climate action plan” to achieve carbon neutrality, of which geothermal heat extracted from deep rocks (Earth source heat) is a critical component. This paper proposes coupling baseload geothermal heating with energy from waste biomass from Cornell's dairy farms to meet the campus' peak heating demand. The envisioned biomass peaking system, consisting of a hybrid anaerobic digestion/hydrothermal liquefaction/biomethanation process, produces renewable natural gas (RNG) for injection and storage into the natural gas (NG) distribution grid and uses NG withdrawals at times of peak heating demand. We show that 97% of the total annual peak heating demand (9661 MW h) can be met using continuous RNG production using manure from Cornell's 600 dairy cows, which provides 910 × 106 l of RNG/year. The overall RNG system requires $8.9 million of capital investment and, assuming favorable policies, could achieve an effective levelized cost of heat (LCOH) of $32/GJ (minimum RNG selling price) and a net present value of $7.5 million after a 30-year project lifetime. Favorable policies were quantified by examining a range of incentivized prices for RNG injection ($47/MJ) and assuming wholesale utilities costs (NG withdrawals and electric imports). Selling RNG at the New York commercial NG price ($7/GJ) with utilities imports at commercial rates produces an LCOH ($70/GJ) in excess of the RNG selling price, highlighting the importance of carbon credits for financial profitability.

1.
B. J.
Alqahtani
and
D.
Patiño-Echeverri
, “
Combined effects of policies to increase energy efficiency and distributed solar generation: A case study of the Carolinas
,”
Energy Policy
134
,
110936
(
2019
).
2.
M.
Arbabzadeh
,
R.
Sioshansi
,
J. X.
Johnson
, and
G. A.
Keoleian
, “
The role of energy storage in deep decarbonization of electricity production
,”
Nat. Commun.
10
,
3413
(
2019
).
3.
H.
Johlas
,
S.
Witherby
, and
J. R.
Doyle
, “
Storage requirements for high grid penetration of wind and solar power for the MISO region of North America: A case study
,”
Renewable Energy
146
,
1315
(
2020
).
4.
See https://rev.ny.gov/ for New York State Government, Reforming the Energy Vision,
2019
.
5.
See https://www.nyiso.com/real-time-dashboard for New York Independent System Operator, Real-time dashboard,
2020
.
6.
See https://energyplan.ny.gov/-/media/nysenergyplan/2014stateenergyplan-documents/2015-nysep-vol2-enduse.pdf for
New York State Energy Planning Board, The Energy to Lead—End-use Energy,
2015
.
7.
K.
McCabe
,
M.
Gleason
,
T.
Reber
, and
K. R.
Young
, “
Characterizing U.S. heat demand for potential application of geothermal direct use
,”
Trans. –Geotherm. Resour. Counc.
40
,
721
(
2016
).
8.
See https://www.eia.gov/consumption/commercial/data/2012 for
Energy Information Administration, Commercial Buildings Energy Consumption Survey
,
2012
.
9.
See https://www.eia.gov/state/seds/seds-data-complete.php?sid=US#Consumption for
Energy Information Administration, State Energy Data System (SEDS)
:1960–2016,
2018
.
10.
See https://www.eia.gov/consumption/residential/data/2015/ for
Energy Information Administration, Residential Energy Consumption Survey,
2015
.
11.
See https://ww3.arb.ca.gov/cc/scopingplan/meetings/082018/august-20-2018-ghg-workshop-summary.pdf for
California Air Resources Board, Opportunities for Additional Reductions from Petroleum Transportation fuels,
2018
.
12.
See https://www.eia.gov/environment/emissions/state/ for
Energy Information Administration, State Carbon Dioxide Emissions Data,
2017
.
13.
A.
Mota-Babiloni
,
J. R.
Barbosa
,
P.
Makhnatch
, and
J. A.
Lozano
, “
Assessment of the utilization of equivalent warming impact metrics in refrigeration, air conditioning and heat pump systems
,”
Renewable Sustainable Energy Rev.
129
,
109929
(
2020
).
14.
S.
Bobbo
,
L.
Fedele
,
M.
Curcio
,
A.
Bet
,
M.
De Carli
,
G.
Emmi
,
F.
Poletto
,
A.
Tarabotti
,
D.
Mendrinos
,
G.
Mezzasalma
, and
A.
Bernardi
, “
Energetic and exergetic analysis of low global warming potential refrigerants as substitutes for R410A in ground source heat pumps
,”
Energies
12
,
3538
(
2019
).
15.
M. V. A.
Finco
and
W.
Doppler
, “
Bioenergy and sustainable development: The dilemma of food security and climate change in the Brazilian savannah
,”
Energy Sustainable Dev.
14
,
194
(
2010
).
16.
D.
Thrän
,
T.
Seidenberger
,
J.
Zeddies
, and
R.
Offermann
, “
Global biomass potentials—Resources, drivers and scenario results
,”
Energy Sustainable Dev.
14
,
200
(
2010
).
17.
K.
Vávrová
,
J.
Knápek
, and
J.
Weger
, “
Modeling of biomass potential from agricultural land for energy utilization using high resolution spatial data with regard to food security scenarios
,”
Renewable Sustainable Energy Rev.
35
,
436
(
2014
).
18.
J.
Pálné Schreiner
and
A.
Csébfalvi
, in
Proceedings of the Thirteenth International Conference on Civil, Structural and Environmental Engineering Computing
(
2011
).
19.
J.
Tester
,
T.
Reber
,
K.
Beckers
,
M.
Lukawski
,
E.
Camp
,
G.
Aguirre
,
T.
Jordan
, and
F.
Horowitz
, “
Integrating geothermal energy use into re-building American infrastructure
,” in
Proceedings of the World Geothermal Congress
(
2015
).
20.
J. G.
Gluyas
,
C. A.
Adams
,
J. P.
Busby
,
J.
Craig
,
C.
Hirst
,
D. A. C.
Manning
,
A.
McCay
,
N. S.
Narayan
,
H. L.
Robinson
,
S. M.
Watson
,
R.
Westaway
, and
P. L.
Younger
, “
Keeping warm: A review of deep geothermal potential of the UK
,”
Proc. Inst. Mech. Eng., Part A
232
,
115
(
2018
).
21.
See https://fcs.cornell.edu/departments/energy-sustainability/energy-management-overview/energy-fast-facts for
Cornell Facilities and Campus Services, Central Energy Plant Fast Facts,
2019
.
22.
See https://sustainablecampus.cornell.edu/our-leadership/cap for
Cornell University Sustainable Campus, Climate Action Plan
,
2019
.
23.
S.
Beyers
and
O.
Racle
, in
Proceedings of the World Geothermal Congress
, Reykjavik (
2020
).
24.
J. W.
Tester
,
S.
Beyers
,
J.
Olaf Gustafson
,
T. E.
Jordan
,
J. D.
Smith
,
J. A.
Aswad
,
K. F.
Beckers
,
R.
Allmendinger
,
L.
Brown
,
F.
Horowitz
,
D.
May
,
T.
Ming Khan
, and
M.
Pritchard
, “
District geothermal heating using EGS technology to meet carbon neutrality goals: a case study of earth source heat for the Cornell University campus
,” in
Proceedings of the World Geothermal Congress
(
2020
).
25.
M. R.
Martin
,
J. J.
Fornero
,
R.
Stark
,
L.
Mets
, and
L. T.
Angenent
, “
A single-culture bioprocess of methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2
,”
Archaea
2013
,
1
.
26.
S.
Schiebahn
,
T.
Grube
,
M.
Robinius
,
L.
Zhao
,
A.
Otto
,
B.
Kumar
,
M.
Weber
, and
D.
Stolten
, “
Power to gas
,” in
Transition to Renewable Energy Systems
, edited by
D.
Stolten
and
V.
Scherer
(
Wiley
,
2013
), Chap. 39, pp.
813
848
.
27.
M.
Götz
,
J.
Lefebvre
,
F.
Mörs
,
A.
McDaniel Koch
,
F.
Graf
,
S.
Bajohr
,
R.
Reimert
, and
T.
Kolb
, “
Renewable power-to-gas: A technological and economic review
,”
Renewable Energy
85
,
1371
(
2016
).
28.
K.
Ghaib
and
F. Z.
Ben-Fares
, “
Power-to-methane: A state-of-the-art review
,”
Renewable Sustainable Energy Rev.
81
,
433
(
2018
).
29.
D. C.
Rosenfeld
,
H.
Böhm
,
J.
Lindorfer
, and
M.
Lehner
, “
Scenario analysis of implementing a power-to-gas and biomass gasification system in an integrated steel plant: A techno-economic and environmental study
,”
Renewable Energy
147
,
1511
(
2020
).
30.
M.
Bailera
,
P.
Lisbona
,
L. M.
Romeo
, and
S.
Espatolero
, “
Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2
,”
Renewable Sustainable Energy Rev.
69
,
292
(
2017
).
31.
A. W.
Zimmermann
,
J.
Wunderlich
,
L.
Müller
,
G. A.
Buchner
,
A.
Marxen
,
S.
Michailos
,
K.
Armstrong
,
H.
Naims
,
S.
McCord
,
P.
Styring
,
V.
Sick
, and
R.
Schomäcker
, “
Techno-economic assessment guidelines for CO2 utilization
,”
Front. Energy Res.
8
,
5
(
2020
).
32.
See https://www.eia.gov/todayinenergy/detail.php?id=11471 for
Energy Information Administration
,
Feed-in tariff: A policy tool encouraging deployment of renewable electricity technologies—Today in Energy—U.S
.,
2013
.
33.
P.
Collet
,
E.
Flottes
,
A.
Favre
,
L.
Raynal
,
H.
Pierre
,
S.
Capela
, and
C.
Peregrina
, “
Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology
,”
Appl. Energy
192
,
282
(
2017
).
34.
T. T. Q.
Vo
,
D. M.
Wall
,
D.
Ring
,
K.
Rajendran
, and
J. D.
Murphy
, “
Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation
,”
Appl. Energy
212
,
1191
(
2018
).
35.
M.
Van Dael
,
S.
Kreps
,
A.
Virag
,
K.
Kessels
,
K.
Remans
,
D.
Thomas
, and
F. D.
Wilde
, “
Techno-economic assessment of a microbial power-to-gas plant—Case study in Belgium
,”
Appl. Energy
215
,
416
(
2018
).
36.
S.
Michailos
,
M.
Walker
,
A.
Moody
,
D.
Poggio
, and
M.
Pourkashanian
, “
Biomethane production using an integrated anaerobic digestion, gasification and CO2 biomethanation process in a real waste water treatment plant: A techno-economic assessment
,”
Energy Convers. Manag.
209
,
112663
(
2020
).
37.
See http://www.agronext.iastate.edu/immag/pubs/manure-prod-char-d384-2.pdf for
ASAE
, ASAE D384.2 MAR2005 Manure Production and Characteristics American Society of Agricultural Engineers,
2005
.
38.
See https://www.nyiso.com/custom-reports for
New York Independent System Operator, Energy Market and Operational Data Custom Reports,
2020
.
39.
See https://www.eia.gov/maps/layer_info-m.php for
Energy Information Administration, Layer Information for Interactive State Maps,
2018
.
40.
See https://ansci.cals.cornell.edu/about-us/facilities/ for
Cornell University College of Agriculture and Life Sciences, Department of Animal Science—Facilities,
2019
.
41.
B. E.
Rittmann
and
P. L.
McCarty
,
Environmental Biotechnology: Principles and Applications
(
McGraw-Hill Education
,
New York
,
2001
).
42.
J. G.
Usack
,
L. G.
Van Doren
,
R.
Posmanik
,
J. W.
Tester
, and
L. T.
Angenent
, “
Harnessing anaerobic digestion for combined cooling, heat, and power on dairy farms: An environmental life cycle and techno-economic assessment of added cooling pathways
,”
J. Dairy Sci.
102
,
3630
(
2019
).
43.
I.
Ullah Khan
,
M.
Hafiz Dzarfan Othman
,
H.
Hashim
,
T.
Matsuura
,
A. F.
Ismail
,
M.
Rezaei-DashtArzhandi
, and
I. W.
Azelee
, “
Biogas as a renewable energy fuel—A review of biogas upgrading, utilisation and storage
,”
Energy Convers. Manag.
150
,
277
(
2017
).
44.
K. H.
Hansen
,
I.
Angelidaki
, and
B. K.
Ahring
, “
Anaerobic digestion of swine manure: Inhibition by ammonia
,”
Water Res.
32
,
5
(
1998
).
45.
See https://www.extension.uidaho.edu/publishing/pdf/CIS/CIS1215.pdf for
University of Idaho Extension, Anaerobic Digestion Basics,
2014
.
46.
C.
Mao
,
Y.
Feng
,
X.
Wang
, and
G.
Ren
, “
Review on research achievements of biogas from anaerobic digestion
,”
Renewable Sustainable Energy Rev.
45
,
540
(
2015
).
47.
L. T.
Angenent
,
J. G.
Usack
,
J.
Xu
,
D.
Hafenbradl
,
R.
Posmanik
, and
J. W.
Tester
, “
Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion
,”
Bioresour. Technol.
247
,
1085
(
2018
).
48.
J. G.
Usack
,
L. G.
Van Doren
,
R.
Posmanik
,
R. A.
Labatut
,
J. W.
Tester
, and
L. T.
Angenent
, “
An evaluation of anaerobic co-digestion implementation on New York State dairy farms using an environmental and economic life-cycle framework
,”
Appl. Energy
211
,
28
(
2018
).
49.
B.
Fröschle
,
M.
Heiermann
,
M.
Lebuhn
,
U.
Messelhäusser
, and
M.
Plöchl
, in
Biogas Science and Technology
, edited by
G. M.
Guebitz
,
A.
Bauer
,
G.
Bochmann
,
A.
Gronauer
, and
S.
Weiss
(
Springer International Publishing
,
Cham
,
2015
), pp.
63
99
.
50.
F.
Vedrenne
,
F.
Béline
,
P.
Dabert
, and
N.
Bernet
, “
The effect of incubation conditions on the laboratory measurement of the methane producing capacity of livestock wastes
,”
Bioresour. Technol.
99
,
146
(
2008
).
51.
R.
Posmanik
,
C. M.
Martinez
,
B.
Cantero-Tubilla
,
D. A.
Cantero
,
D. L.
Sills
,
M. J.
Cocero
, and
J. W.
Tester
, “
Acid and alkali catalyzed hydrothermal liquefaction of dairy manure digestate and food waste
,”
ACS Sustainable Chem. Eng.
6
,
2724
(
2018
).
52.
S. S.
Toor
,
L.
Rosendahl
, and
A.
Rudolf
, “
Hydrothermal liquefaction of biomass: A review of subcritical water technologies
,”
Energy
36
,
2328
(
2011
).
53.
J.
Fang
,
L.
Zhan
,
Y. S.
Ok
, and
B.
Gao
, “
Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass
,”
J. Ind. Eng. Chem.
57
,
15
(
2018
).
54.
I.
Bargmann
,
M. C.
Rillig
,
A.
Kruse
,
J.-M.
Greef
, and
M.
Kücke
, “
Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability
,”
J. Plant Nutr. Soil Sci.
177
,
48
(
2014
).
55.
S.
Schimmelpfennig
,
C.
Kammann
,
G.
Moser
,
L.
Grünhage
, and
C.
Müller
, “
Changes in macro- and micronutrient contents of grasses and forbs following Miscanthus x giganteus feedstock, hydrochar and biochar application to temperate grassland
,”
Grass Forage Sci.
70
,
582
(
2015
).
56.
S.
Abel
,
A.
Peters
,
S.
Trinks
,
H.
Schonsky
,
M.
Facklam
, and
G.
Wessolek
, “
Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
,”
Geoderma
202–203
,
183
(
2013
).
57.
N.
Kassem
,
J.
Hockey
,
C.
Lopez
,
L.
Lardon
,
L. T.
Angenent
, and
J. W.
Tester
, “
Integrating anaerobic digestion, hydrothermal liquefaction, and biomethanation within a power-to-gas framework for dairy waste management and grid decarbonization: A techno-economic assessment
,”
Sustainable Energy Fuels
4
,
4644
(
2020
).
58.
See https://hydrogeneurope.eu/hydrogen-production-renewables for
Hydrogen Europe
, Hydrogen Production from Renewables,
2019
.
59.
K.
Zeng
and
D.
Zhang
, “
Recent progress in alkaline water electrolysis for hydrogen production and applications
,”
Prog. Energy Combust. Sci.
36
,
307
(
2010
).
60.
M.
Carmo
,
D. L.
Fritz
,
J.
Mergel
, and
D.
Stolten
, “
A comprehensive review on PEM water electrolysis
,”
Int. J. Hydrogen Energy
38
,
4901
(
2013
).
61.
M.
Lehner
,
R.
Tichler
,
H.
Steinmuller
, and
M.
Koppe
,
Power-to-Gas: Technology and Business Models
(
Springer International
,
2014
).
62.
H.
Blanco
,
W.
Nijs
,
J.
Ruf
, and
A.
Faaij
, “
Potential for hydrogen and power-to-liquid in a low-carbon EU energy system using cost optimization
,”
Appl. Energy
232
,
617
(
2018
).
63.
S. M.
Saba
,
M.
Müller
,
M.
Robinius
, and
D.
Stolten
, “
The investment costs of electrolysis—A comparison of cost studies from the past 30 years
,”
Int. J. Hydrogen Energy
43
,
1209
(
2018
).
64.
C.
Wulf
,
J.
Linßen
, and
P.
Zapp
, “
Review of power-to-gas projects in Europe
,”
Energy Procedia
155
,
367
(
2018
).
65.
O.
Schmidt
,
A.
Gambhir
,
I.
Staffell
,
A.
Hawkes
,
J.
Nelson
, and
S.
Few
, “
Future cost and performance of water electrolysis: An expert elicitation study
,”
Int. J. Hydrogen Energy
42
,
30470
(
2017
).
66.
M.
Thema
,
F.
Bauer
, and
M.
Sterner
, “
Power-to-Gas: Electrolysis and methanation status review
,”
Renewable Sustainable Energy Rev.
112
,
775
(
2019
).
67.
X.
Zhang
,
S. H.
Chan
,
H. K.
Ho
,
S.-C.
Tan
,
M.
Li
,
G.
Li
,
J.
Li
, and
Z.
Feng
, “
Towards a smart energy network: The roles of fuel/electrolysis cells and technological perspectives
,”
Int. J. Hydrogen Energy
40
,
6866
(
2015
).
68.
X.
Liu
,
S.
Shanbhag
,
T. V.
Bartholomew
,
J. F.
Whitacre
, and
M. S.
Mauter
, “
Cost comparison of capacitive deionization and reverse osmosis for brackish water desalination
,”
ACS EST Eng.
(published online).
69.
See http://www.electrochaea.com/ for
Electrochaea GmbH
, Electrochaea GmbH Power to Gas Energy Storage,
2019
.
70.
T.
Schaaf
,
J.
Grünig
,
M. R.
Schuster
,
T.
Rothenfluh
, and
A.
Orth
, “
Methanation of CO2—Storage of renewable energy in a gas distribution system
,”
Energy. Sustainable Soc.
4
,
2
(
2014
).
71.
T. T. Q.
Vo
,
A.
Xia
,
D. M.
Wall
, and
J. D.
Murphy
, “
Use of surplus wind electricity in Ireland to produce compressed renewable gaseous transport fuel through biological power to gas systems
,”
Renewable Energy
105
,
495
(
2017
).
72.
G. M.
Astill
,
R. C.
Shumway
, and
C.
Frear
,
Anaerobic Digester System Enterprise Budget Calculator
(
Economic Research Service, U.S. Department of Agriculture
,
2018
).
73.
G. M.
Astill
and
C. R.
Shumway
, “
Profits from pollutants: Economic feasibility of integrated anaerobic digester and nutrient management systems
,”
J. Environ. Manage.
184
,
353
(
2016
).
74.
See https://www.greenlanerenewables.com/biogas/technology/ for
Geenlane Biogas
, Biogas Upgrading,
2020
.
75.
See https://www.europeanbiogas.eu/greenlane-biogas-order-secured-for-biogas-upgrading-plant-from-sifang-leo-livestock-science-and-technology/ for European Biogas Association, Greenlane Biogas: Order secured for biogas upgrading plant from Sifang Leo Livestock Science and Technology, 2015.
76.
A. A.
Peterson
,
F.
Vogel
,
R. P.
Lachance
,
M.
Fröling
,
M. J.
Antal
, and
J. W.
Tester
, “
Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies
,”
Energy Environ. Sci.
1
,
32
(
2008
).
77.
L. G.
Van Doren
,
R.
Posmanik
,
F. A.
Bicalho
,
J. W.
Tester
, and
D. L.
Sills
, “
Prospects for energy recovery during hydrothermal and biological processing of waste biomass
,”
Bioresour. Technol.
225
,
67
(
2017
).
78.
R.
Posmanik
,
R. A.
Labatut
,
A. H.
Kim
,
J. G.
Usack
,
J. W.
Tester
, and
L. T.
Angenent
, “
Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks
,”
Bioresour. Technol.
233
,
134
(
2017
).
79.
R.
Turton
,
R. C.
Bailie
,
W.
Whiting
, and
J. A.
Shaeiwitz
,
Analysis, Synthesis and Design of Chemical Processes
(
Prentice Hall
,
New Jersey
,
1999
).
80.
G. D.
Ulrich
and
P. T.
Vasudevan
,
Chemical Engineering Process Design and Economics: A Practical Guide
, 2nd ed. (Process Publishing,
2004
).
81.
C.
Gooch
,
J.
Pronto
,
B.
Gloy
,
N.
Scott
,
S.
McGlynn
, and
C.
Bentley
,
Feasibility Study of Anaerobic Digestion and Biogas Utilization Options for the Proposed Lewis County Community Digester
(Cornell University,
2010
), available at http://northeast.manuremanagement.cornell.edu/Pages/Funded_Projects/Past_Funded_%20Projects.html.
82.
See https://www.geotab.com/truck-mpg-benchmark/ for
Geotab
, The State of Fuel Economy in Trucking 2019,
2019
.
83.
See https://www.eia.gov/environment/emissions/co2_vol_mass.php for
Energy Information Administration—Independent Statistics and Analysis
, Carbon Dioxide Emissions Coefficients,
2016
.
84.
See https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm for
Energy Information Administration
, Henry Hub Natural Gas Spot Price,
2019
.
85.
See https://www.eia.gov/dnav/ng/ng_pri_sum_a_EPG0_PCS_DMcf_a.htm for
Energy Information Administration
, Natural Gas Prices,
2018
.
86.
See https://www.irena.org/costs/Power-Generation-Costs/Hydropower for
International Renewable Energy Agency
, Hydropower.
87.
See https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf for
International Renewable Energy Agency, Renewable Power Generation Costs in 2018, Abu Dhabi,
2019
.
88.
See https://www.eia.gov/outlooks/archive/aeo19/pdf/electricity_generation.pdf for
Energy Information Administration—Independent Statistics and Analysis, Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook
2019,
2019
.
89.
See https://www.nyserda.ny.gov/Researchers-and-Policymakers/Energy-Prices/Electricity/Monthly-Avg-Electricity-Commercial for
New York State Energy Research and Development Authority
, Monthly Average Retail Price of Electricity—Commercial,
2020
.
90.
See https://www.epa.gov/renewable-fuel-standard-program/overview-renewable-fuel-standard for
Environmental Protection Agency
, Overview for Renewable Fuel Standard,
2019
.
91.
See https://www.epa.gov/renewable-fuel-standard-program/what-fuel-pathway for
Environmental Protection Agency
, What is a Fuel Pathway?,
2019
.
92.
See https://www.epa.gov/fuels-registration-reporting-and-compliance-help/rin-trades-and-price-information for
Environmental Protection Agency
, RIN Trades and Price Information,
2019
.
93.
See https://ww3.arb.ca.gov/fuels/lcfs/background/basics.htm for
California Air Resources Board, LCFS Basics,
2019
.
94.
J. A.
Libra
,
K. S.
Ro
,
C.
Kammann
,
A.
Funke
,
N. D.
Berge
,
Y.
Neubauer
,
M. M.
Titirici
,
C.
Fühner
,
O.
Bens
,
J.
Kern
, and
K. H.
Emmerich
, “
Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis
,”
Biofuels
2
,
71
(
2011
).
95.
M.
Lucian
and
L.
Fiori
, “
Hydrothermal carbonization of waste biomass: Process design, modeling, energy efficiency and cost analysis
,”
Energies
10
,
211
(
2017
).
96.
A.
Saba
,
K.
McGaughy
, and
M.
Reza
, “
Techno-economic assessment of co-hydrothermal carbonization of a coal-miscanthus blend
,”
Energies
12
,
630
(
2019
).
97.
M. B.
Ahmed
,
J. L.
Zhou
,
H. H.
Ngo
, and
W.
Guo
, “
Insight into biochar properties and its cost analysis
,”
Biomass Bioenergy
84
,
76
(
2016
).
98.
See https://biochar-international.org/state-of-the-biochar-industry-2013/ for
International Biochar Initiative
, 2013 State of the Biochar Industry—A Survey of Commercial Activity in the Biochar Field, 2013.
99.
P.
Pradhan
,
P.
Gadkari
,
S. M.
Mahajani
, and
A.
Arora
, “
A conceptual framework and techno-economic analysis of a pelletization-gasification based bioenergy system
,”
Appl. Energy
249
,
1
(
2019
).
100.
See https://atb.nrel.gov/electricity/2018/index.html?t=cg for
National Renewable Energy Laboratory
, Natural Gas Plants, 2018.
101.
D.
Parra
,
X.
Zhang
,
C.
Bauer
, and
M. K.
Patel
, “
An integrated techno-economic and life cycle environmental assessment of power-to-gas systems
,”
Appl. Energy
193
,
440
(
2017
).
102.
See https://www.eia.gov/dnav/ng/NG_CONS_SUM_DCU_SNY_A.htm for
Energy Information Administration
, Natural Gas Consumption by End Use,
2017
.

Supplementary Material

You do not currently have access to this content.