This paper deals with Hassi R'mel's solar power plant, a solar power plant one (SPPI) located in Algeria's southern region. The current configuration of the SPPI is a 25 MW parabolic trough used with 130 MW connected cycle gas turbines. In this paper, a techno-economic analysis of the solar part of the SPPI is described. A multiobjective optimization process was carried out to find the most favorable conditions, the most suitable parameters, and the solar power plant's optimum design configuration for better energy production in the future. We optimized the solar multiple, the fossil fill fraction of the backup system, and a full load of thermal storage system for the minimum levelized cost of electricity (LCOE) and the maximum capacity factor. The results showed that the lowest LCOE reached about 5.83 €/kWh for a solar multiple of 1.6. The optimum value of fossil fill fraction is 0.2, with a capacity factor of 60%, and the best optimization of the storage system is 4 h. The optimum power plant produced 118.26 GWh per year. It was concluded that the use of wet cooling was more economical than dry cooling and that among the heat transfer fluids, Therminol VP1 was the best. The validation of the theoretical results confirmed their agreement with the SPPI and solar energy generation system-VI power plants' experimental data. These findings proved that concentrating solar power may be considered as the right solution in countries in the desert and equatorial regions, the Middle East and North Africa region, especially Algeria, where abundant solar energy is available.

1.
Technology roadmap,
Solar Thermal Electricity
(
International Energy Agency (IEA)
,
2014
).
2.
Technology roadmap
,
Solar Photovoltaic Energy
(
International Energy Agency (IEA)
,
2014
).
3.
I.
Purohit
,
P.
Purohit
, and
S.
Shekhar
, “
Evaluating the potential of concentrating solar power generation in Northwestern India
,”
Energy Policy
62
,
157
175
(
2013
).
4.
J.
Duffie
and
W.
Beckman
,
Solar Engineering of Thermal Processes
, 2nd ed. (
John Wiley and Sons
,
1991
).
5.
L.
Poole
, “
Concentrating solar power: Energy from mirrors
,”
Technical Report No. DOE/GO-102001-1147
(National Renewable Energy Laboratory, Golden CO,
2001
).
6.
See http://www.psa.es for “PSA, Plateforme Solaire d'Almeria,
2012
.”
7.
B.
Washom
and
I.
Vanguard
,
Solar Parabolic Dish-Stirling Engine Module
(
Advanco Corporation
,
El Segundo, CA
,
1984
).
8.
See www.nrel.gov/csp/solarpaces/ for “
National Renewable Energy Laboratory, Concentrating Solar Power Projects
.”
9.
W.
Spirkl
,
H.
Ries
,
J.
Muschaweck
, and
A.
Timinger
, “
Optimized compact secondary reflectors for parabolic troughs with tubular absorbers
,”
Sol. Energy
61
(
3
),
153
158
(
1997
).
10.
P.
Golding
and
H. R.
Becerra-Loépez
, “
Multi-objective optimization for capacity expansion of regional power-generation systems: Case study of far west Texas
,”
Energy Convers. Manage.
49
,
1433
1445
(
2008
).
11.
M. J.
Montes
,
A.
Abànades
,
J. M.
Martinez-Val
, and
M.
Valdés
, “
Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors
,”
Sol. Energy
83
,
2165
2176
(
2009
).
12.
Q.
Liu
,
M.
Yang
,
J.
Lei
,
H.
Jin
,
Z.
Gao
, and
Y.
Wang
, “
Modeling and optimizing parabolic trough solar collector systems using the least squares support vector machine method
,”
Sol. Energy
86
,
1973
1980
(
2012
).
13.
C. Y.
Tsai
and
P. D.
Lin
, “
Optimized variable-focus-parabolic-trough reflector for solar thermal concentrator system
,”
Sol. Energy
86
,
1164
1172
(
2012
).
14.
N. H.
Abu-Hamdeh
,
K. A.
Alnefaie
, and
K. H.
Almitani
, “
Design and performance characteristics of solar adsorption refrigeration system using parabolic trough collector: Experimental and statistical optimization technique
,”
Energy Convers. Manage.
74
,
162
170
(
2013
).
15.
G.
Pierucci
,
D.
Fontani
,
P.
Sansoni
, and
M.
De Lucia
, “
Shape optimization for parabolic troughs working in non-ideal conditions
,”
Energy Procedia
57
,
2231
2240
(
2014
).
16.
R.
Silva
,
M.
Berenguel
,
M.
Pérez
, and
A.
Fernández-Garcia
, “
Thermo-economic design optimization of parabolic trough solar plants for industrial process heat applications with memetic algorithms
,”
Appl. Energy
113
,
603
614
(
2014
).
17.
Y. L.
He
,
Z. D.
Cheng
,
B. C.
Du
,
K.
Wang
, and
Q.
Liang
, “
Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm
,”
Appl. Energy
148
,
282
293
(
2015
).
18.
S.
Bandyopadhyay
and
N. B.
Desai
, “
Optimization of concentrating solar thermal power plant based on parabolic trough collector
,”
J. Cleaner Prod.
89
,
262
271
(
2015
).
19.
M. C.
Yang
,
W.
Fu
,
Y. Z.
Zhu
, and
L.
Yang
, “
The wind-structure interaction analysis and optimization of parabolic trough collector
,”
Energy Procedia
69
,
77
83
(
2015
).
20.
A. B.
Kasaeian
,
P.
Mohammad Zadeh
,
T.
Sokhansefat
,
F.
Kowsary
, and
A.
Akbarzadeh
, “
Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid
,”
Energy
82
,
857
864
(
2015
).
21.
T.
Bello-Ochende
,
A.
Mwesigye
, and
J. P.
Meyer
, “
Multi-objective and thermodynamic optimisation of a parabolic trough receiver with perforated plate inserts
,”
Appl. Therm. Eng.
77
,
42
56
(
2015
).
22.
Q.
Chen
,
Y.
Liu
,
K.
Hua
, and
J. H.
Hao
, “
Flow field optimization for the solar parabolic trough receivers in direct steam generation systems by the variational principle
,”
Int. J. Heat Mass Transfer
102
,
1073
1081
(
2016
).
23.
J.
Guo
and
X.
Huai
, “
Multi-parameter optimization design of parabolic trough solar receiver
,”
Appl. Therm. Eng.
98
,
73
79
(
2016
).
24.
J.
Sun
,
R.
Wang
,
H.
Hong
, and
Q.
Liu
, “
An optimized tracking strategy for small-scale double-axis parabolic trough collector
,”
Appl. Therm. Eng.
112
,
1408
1420
(
2017
).
25.
M. A.
Moghimi
and
G.
Ahmadi
, “
Wind barriers optimization for minimizing collector mirror soiling in a parabolic trough collector plant
,”
Appl. Energy
225
,
413
423
(
2018
).
26.
A.
Kasaeian
,
H.
Hoseinzadeh
, and
M. B.
Shafii
, “
Geometric optimization of parabolic trough solar collector based on the local concentration ratio using the Monte Carlo method
,”
Energy Convers. Manage.
175
,
278
287
(
2018
).
27.
M. A.
Ehyaei
,
A.
Ahmadi
,
M. E.
Haj Assad
, and
T.
Salameh
, “
Optimization of parabolic through collector (PTC) with multi-objective swarm optimization (MOPSO) and energy, exergy and economic analyses
,”
J. Cleaner Prod.
234
,
285
296
(
2019
).
28.
M.
Moloodpoor
,
A.
Mortazavi
, and
N.
Ozbalta
, “
Thermal analysis of parabolic trough collectors via a swarm intelligence optimizer
,”
Sol. Energy
181
,
264
275
(
2019
).
29.
V. E.
Dudley
,
G. J.
Kolb
,
A. R.
Mahoney
,
T. R.
Mancini
,
C. W.
Matthews
,
M.
Sloan
, and
D.
Kearny
, “
Test results: SEGS LS-2 solar collector
,”
Technical Report No. SAND94-1884
(Sandia National Laboratories,
1994
).
30.
S.
Khanmohammadi
,
O.
Kizilkan
, and
W. A.
Faraedoon
, “
Tri-objective optimization of a hybrid solar-assisted power refrigeration system working with supercritical carbon dioxide
,”
Renewable Energy
156
,
1348
1360
(
2019
).
31.
O.
May Tzuc
,
A.
Bassam
,
L. J.
Ricalde
,
O. A.
Jaramillo
,
M.
Flota-Banuelos
, and
M. A.
Escalante Soberanis
, “
Environmental-economic optimization for implementation of parabolic collectors in the industrial process heat generation: Case study of Mexico
,”
J. Cleaner Prod.
242
,
118538
(
2020
).
32.
M.
Ali Abazaa
,
W. M.
El-Maghlanya
,
M.
Hassaba
, and
F.
Abulfotuh
, “
10 MW concentrated solar power (CSP) plant operated by 100% solar energy: Sizing and techno-economic optimization
,”
Alexandria Eng. J.
59
,
39
47
(
2020
).
33.
E.
Shagdar
,
Y.
Shuai
,
B.
Guene Lougou
,
E.
Ganbold
,
O. P.
chinonso
, and
H.
Tan
, “
Analysis of heat flow diagram of small-scale power generation system: Innovative approaches for improving techno-economic and ecological indices
,”
Sci. China Technol. Sci.
63
,
2256
(
2020
).
34.
E.
Shagdar
,
B.
Guene Lougou
,
Y.
Shuai
,
J.
Anees
,
C.
Damdinsuren
, and
H.
Tan
, “
Performance analysis and techno-economic evaluation of 300 MW solar assisted power generation system in the whole operation conditions
,”
Appl. Energy
264
,
114744
(
2020
).
35.
R.
Boudries
and
R.
Dizene
, “
Potentialities of hydrogen production in Algeria
,”
Int. J. Hydrogen Energy
33
(
17
),
4476
4487
(
2008
).
36.
Stratégie et Veille, Recueil trimestriel de l'hebdomadaire N02/2018/Sonelgaz/DGDS/DS.
37.
See www.ons.dz for “National Office of Statics (Algeria),
2019
.”
38.
A.
Ghezloun
,
S.
Chergui
, and
N.
Oucher
, “
Algerian energy strategy in the context of sustainable development (legal framework)
,”
Energy Procedia
6
,
319
324
(
2011
).
39.
See https://globalsolaratlas.info/map for “Global Solar Atlas.”
40.
O.
Behar
,
A.
Kellaf
,
K.
Mohamedi
, and
M.
Belhamel
, “
Instantaneous performance of the first integrated solar combined cycle system in Algeria
,”
Energy Procedia
6
,
185
193
(
2011
).
41.
A.
Zaaraoui
,
M. L.
Yousfi
, and
N.
Said
, “
Technical and economical performance of parabolic trough collector power plant under Algerian climate
,”
Procedia Eng.
33
,
78
91
(
2012
).
42.
H.
Derbal
,
S.
Bouaichaoui
,
N. E.
Gharbi
,
M.
Belhamel
, and
A.
Benzaoui
, “
Modeling and numerical simulation of an integrated solar combined cycle system in Algeria
,”
Procedia Eng.
33
,
199
208
(
2012
).
43.
M.
Abbas
,
Z.
Belgroun
,
H.
Aburidah
, and
N. K.
Merzouk
, “
Assessment of a solar parabolic trough power plant for electricity generation under Mediterranean and arid climate conditions in Algeria
,”
Energy Procedia
42
,
93
102
(
2013
).
44.
T. E.
Boukelia
and
M. S.
Mecibah
, “
Parabolic trough solar thermal power plant: Potential, and projects development in Algeria
,”
Renewable Sustainable Energy Rev.
21
,
288
297
(
2013
).
45.
L.
Achour
,
M.
Bouharkat
, and
O.
Behar
, “
Performance assessment of an integrated solar combined cycle in the southern of Algeria
,”
Energy Rep.
4
,
207
217
(
2018
).
46.
A.
Messai
,
Y.
Benkedda
,
S.
Bouaichaoui
, and
M.
Benzerga
, “
Feasibility study of parabolic trough solar power plant under Algerian climate
,”
Energy Procedia
42
,
73
82
(
2013
).
47.
A.
Trad
and
M. A.
Ait Ali
, “
Determination of the optimum design through different funding scenarios for future parabolic trough solar power plant in Algeria
,”
Energy Convers. Manage.
91
,
267
279
(
2015
).
48.
T. E.
Boukelia
,
M. S.
Mecibah
,
B. N.
Kumar
, and
K. S.
Reddy
, “
Optimization, selection, and feasibility study of solar parabolic trough power plants for Algerian conditions
,”
Energy Convers. Manage.
101
,
450
459
(
2015
).
49.
T. E.
Boukelia
,
M. S.
Mecibah
,
B. N.
Kumar
, and
K. S.
Reddy
, “
Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt
,”
Energy
88
,
292
303
(
2015
).
50.
T. E.
Boukelia
,
O.
Arslan
, and
M. S.
Mecibah
, “
ANN-based optimization of a parabolic trough solar thermal power plant
,”
Appl. Therm. Eng.
107
,
1210
1218
(
2016
).
51.
S.
Mihoub
,
A.
Chermiti
, and
H.
Beltagy
, “
Methodology of determining the optimum performances of future concentrating solar thermal power plants in Algeria
,”
Energy
122
,
801
810
(
2017
).
52.
See https://sam.nrel.gov/ for “System Advisor Model (SAM) version 2018.11.11.”
53.
See http://www.energy.gov.dz/francais/index.php?page=projet-centrale-hybride-solaire-gaz-de-150-mw for “
Ministre de l'Energie et des Mines, Projet Centrale Hybride Solaire Gaz de 150 MW
.”
54.
N. E.
Gharbi
, “
La centrale hybride de Hassi R'mel
,”
Bulletin des Energies Renouvelables
21
,
17
18
(
2011
), https://www.cder.dz/vlib/bulletin/pdf/bulletin_021_11.pdf.
55.
B.
Bairi
,
Renewable Energies in Algeria Egalities & Perspectives
(
Algerian-Italian Cooperation on Renewable Energies
,
Milan
,
2007
).
56.
A.
Benidir
, “
Calcul énergétique de l'installation hybride thermique pour la production d'électricité
,” Ph.D. thesis (Benmachiche Abdelmoumen. H, Universite de Biskra,
2013
).
57.
See https://fr.wikipedia.org/wiki/Centrale_%C3%A9lectrique_mixte_de_Hassi_R%27Mel for “Centrale électrique mixte de Hassi R'Mel,
2011
.”
58.
F.
Khaldi
, “
Energy and exergy analysis of the first hybrid solar-gas power plant in Algeria
,” in
Proceedings of ECOS, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems
, Perugia, Italy, June 26–29 (
2012
).
59.
E.
Bellini
, see https://www.pv-magazine.fr/2019/08/16/en-algerie-lappel-doffres-de-50-mw-pour-les-projets-hybrides-se-termine-avec-loffre-la-plus-basse-de-010e-kwh/ for “En Algérie, l'appel d'offres de 50 MW pour les projets hybrides se termine avec l'offre la plus basse de 0,10€/kWh,
2019
.”
60.
K.
Harald
,
Solar Thermal Power Generation, Potential in Algeria & Hassi R'Mel Project
(
Renewable Energy Department, Lahmeyer International GmbH, Solar Energy, Weltmesse für Erneuerbare
,
Energien, Berlin
,
2008
).
61.
M. J.
Wagner
and
P.
Gilman
, “
Technical manual for the SAM physical trough model
,”
Technical Report No. NREL 5500-51825
(
2011
).
62.
Projected costs of generating electricity. International Energy Agency (IEA)/Nuclear Energy Agency (NEA) report. , 2010 (
2010
).
63.
OECD Development Center, African Economic Outlook
,
Structural Transformation and Natural Resources
(
African Economic Outlook
,
2013
).
64.
LUZ International Limited
,
Solar Electric Generating System IX Technical Description
(
LUZ International Limited
,
1990
).
65.
W.
Meineeke
,
Solar Energy Conversion and Photo Energy Systems: Parabolic Trough Collectors-Vol. IV
(
EOLSS
,
2010
).
66.
A.
Trad
,
Z.
Belgrounand
, and
A. M.
Djebiret
, “
Effect of wind speed on the efficiency of the integrated solar combined cycle power plants SPPI in Algeria
,”
Rev. Energies Renouvelables
16
(
4
),
691
708
(
2013
).
67.
H.
Nezammahalleh
,
F.
Farhadi
, and
M.
Tanhaemami
, “
Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology
,”
Sol. Energy
84
,
1696
1705
(
2010
).
68.
N.
Caldes
,
M.
Varela
,
M.
Santamarıa
, and
R.
Saez
, “
Economic impact of solar thermal electricity deployment in Spain
,”
Energy Policy
37
,
1628
1636
(
2009
).
69.
K.
Ikhlef
and
S.
Larbi
, “
Analyse technique de l'apport solaire de la centrale thermique hybride solaire-gaz de Hassi R'Mel (SPPI)
,”
Rev. Energies Renouvelables
21
(
1
),
27
36
(
2018
), https://www.cder.dz/download/Art21-1_4.pdf.
You do not currently have access to this content.