Some of the recent challenges encountered in research and development of the solar photovoltaic (PV) industry include the decrease in electrical output efficiency of a conventional solar PV module due to the rise in its surface temperature. The main objective of this research work is to enhance and improve the electrical output efficiency of a common silicon-based solar PV module by lowering the operating temperature of the PV module, which was accomplished by attaching hollow rectangular aluminum tubes as a fin to the rear surface of the solar PV panel. The proposed geometrical configuration of tubes helped to increase the PV module heat transfer rate to the surrounding air by increasing the effective heat transfer area without increasing the overall weight of the PV module. In this experimental study, a comparative analysis has been presented for PV modules with fins and without fins. The results obtained from experiments demonstrated that the attached fins reduced the average temperature of the front and rear surfaces up to 8.97% and 8.41%, respectively. The cooling effect produced due to fins improved the open circuit voltage up to 12.97% and the electrical output efficiency up to 2.08%. Furthermore, the results are thoroughly compared with other published studies, which revealed that the proposed configuration is cost effective and structurally sound.

1.
S.
Dubey
,
J. N.
Sarvaiya
, and
B.
Seshadri
, “
Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—A review
,”
Energy Procedia
33
,
311
321
(
2013
).
2.
A.
Waqas
and
J.
Jie
, “
Effectiveness of phase change material for cooling of photovoltaic panel for hot climate
,”
Trans. ASME J. Sol. Energy Eng.
140
,
041006
(
2018
).
3.
F.
Grubišić-Čabo
,
S.
Nižetić
, and
T. G.
Marco
, “
Photovoltaic panels: A review of the cooling techniques
,”
Trans. Famena
40
,
63
74
(
2016
).
4.
N.
Jain
, “
Reduction in parasitic load in a solar thermal power plant to improve its efficiency
,”
Int. J. Sci. Res. Rev.
4
,
24
29
(
2013
).
5.
F.
Grubišić-Čabo
,
S.
Nižetić
,
D.
Čoko
,
I.
Marinić Kragić
, and
A.
Papadopoulos
, “
Experimental investigation of the passive cooled free-standing photovoltaic panel with fixed aluminum fins on the backside surface
,”
J. Cleaner Prod.
176
,
119
129
(
2018
).
6.
A.
Alkhalidi
,
M. K.
Khawaja
, and
A. G.
al Kelany
, “
Investigation of repurposed material utilization for environmental protection and reduction of overheat power losses in PV panels
,”
Int. J. Photoenergy
2019
,
1
.
7.
A.
Sedaghat
,
M. R.
Karami
, and
M.
Eslami
, “
Improving Performance of a Photovoltaic Panel by Pin Fins: A Theoretical Analysis
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
44
,
997
(
2020
).
8.
I.
Ahmed
, “
Enhancement the performance of PV panel by using fins as heat sink
,”
Eng. Technol. J.
36
,
798
805
(
2018
).
9.
D.
Vittorini
and
R.
Cipollone
, “
Fin-cooled photovoltaic module modeling—Performances mapping and electric efficiency assessment under real operating conditions
,”
Energy
167
,
159
167
(
2019
).
10.
N.
Parkunam
,
L.
Pandiyan
,
G.
Navaneethakrishnan
,
S.
Arul
, and
V.
Vijayan
, “
Experimental analysis on passive cooling of flat photovoltaic panel with heat sink and wick structure
,”
Energy Sources, Part A
42
,
653
663
(
2020
).
11.
J.
Kim
,
S.
Bae
,
Y.
Yu
, and
Y.
Nam
, “
Experimental and numerical study on the cooling performance of fins and metal mesh attached on a photovoltaic module
,”
Energies.
13
,
85
12
(
2019
).
12.
M.
Firoozzadeh
,
A.
Shiravi
, and
M.
Shafiee
, “
An experimental study on cooling the photovoltaic modules by fins to improve power generation: economic assessment
,”
Iran. (Iran.) J. Energy Environ.
10
,
80
84
(
2019
).
13.
J.
Kim
and
Y.
Nam
, “
Study on the cooling effect of attached fins on PV using CFD simulation
,”
Energies
12
,
758
(
2019
).
14.
B.
Zhao
,
M.
Hu
,
X.
Ao
,
Q.
Xuan
, and
G.
Pei
, “
Spectrally selective approaches for passive cooling of solar cells: A review
,”
Appl. Energy
262
,
114548
(
2020
).
15.
B.
Zhao
,
M.
Hu
,
X.
Ao
, and
G.
Pei
, “
Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module
,”
Sol. Energy
176
,
248
255
(
2018
).
16.
E.
Lee
and
T.
Luo
, “
Solar energy materials and solar cells black body-like radiative cooling for flexible thin-film solar cells
,”
Sol. Energy Mater. Sol. Cells
194
,
222
228
(
2019
).
17.
K.
Ilse
,
B.
Figgis
,
M. Z.
Khan
,
V.
Naumann
, and
C.
Hagendorf
, “
Dew as a detrimental influencing factor for soiling of PV modules
,”
IEEE J. Photovoltaics
9
,
287
294
(
2019
).
18.
A. K.
Abu
,
I.
Muslih
, and
M. A.
Barghash
, “
Life cycle costing of PV generation system
,”
J. Appl. Res. Ind. Eng.
4
,
185
191
(
2020
).
19.
S.
Pingel
,
Y.
Zemen
,
O.
Frank
,
T.
Geipel
, and
J.
Berghold
, “
Mechanical stability of solar cells within solar panels
,”
Proceedings of 24th EUPVSEC
(
2009
), pp.
3459
3464.
20.
M.
Zinaddinov
,
S.
Mil'Shtein
, and
D.
Kazmer
, “
Design of light-weight solar panels
,”
Conference Record of the IEEE Photovoltaic Specialists Conference
(
2019
), pp.
582
587
.
21.
Sugiyono
,
J. Chem. Inf. Model.
53
,
1689
1699
(
2016
).
22.
P.
Dutta
and
A.
Hossain
, “
Internal cooling augmentation in rectangular channel using two inclined baffles
,”
Int. J. Heat Fluid Flow.
26
,
223
232
(
2005
).
23.
S.
Singh
, “
A review of extended surface in heat transfer problems
,”
Int. J. Eng. Res. Technol.
7
,
10
13
(
2018
).
24.
A.
Franco
, “
An analytical method for the optimum thermal design of convective longitudinal fin arrays
,”
Heat Mass Transfer/Waerme Stoffuebertrag
45
,
1503
1517
(
2009
).
25.
H. B.
Acton
and
Y. A.
Cenjel
,
Heat and Mass Transfer
(
2017
).
26.
T. A.
Kumar
,
C. S. N.
Murthy
, and
A.
Mangalpady
, “
Performance analysis of PV panel under varying surface temperature
,”
MATEC Web Conf.
144
,
04004
(
2018
).
27.
P.
Löper
,
D.
Pysch
,
A.
Richter
,
M.
Hermle
,
S.
Janz
,
M.
Zacharias
, and
S. W.
Glunz
, “
Analysis of the temperature dependence of the open-circuit voltage
,”
Energy Procedia.
27
,
135
142
(
2012
).
28.
C. J.
Ho
,
W. L.
Chou
, and
C. M.
Lai
, “
Thermal and electrical performance of a water-surface floating PV integrated with a water-saturated MEPCM layer
,”
Energy Convers. Manage.
89
,
862
872
(
2015
).
29.
P. K.
Dash
and
N. C.
Gupta
, “
Effect of temperature on power output from different commercially available photovoltaic modules
,”
J. Eng. Res. Appl.
5
,
1
4
(
2015
).
30.
A.
Waqas
,
J.
Jie
, and
L.
Xu
, “
Thermal behavior of a PV panel integrated with PCM-filled metallic tubes: An experimental study
,”
J. Renewable Sustainable Energy
9
,
053504
(
2017
).
31.
F.
Grubišić Čabo
,
S.
Nižetić
,
E.
Giama
, and
A.
Papadopoulos
, “
Techno-economic and environmental evaluation of passive cooled photovoltaic systems in Mediterranean climate conditions
,”
Appl. Therm. Eng.
169
,
114947
(
2020
).
You do not currently have access to this content.