This article provides a systematic analysis of renewable energy performance using data envelopment analysis (DEA) to understand the diverging paths of renewable energy development for countries. In this review, 72 quantitative studies were identified using a multi-stage selection process. The review found that the DEA method can be used as an appropriate tool for performance evaluation of renewable energy studies' research. The DEA method can be applied critically for decision making, especially for policymakers in the renewable energy sector. The review also demonstrated that the DEA method, either traditional or advanced, can be comprehensively used to evaluate the performance of renewable energy studies depending on the objective of the research, as well as the complexity and accuracy of data issues. This review revealed that the selection of input and output factors used in DEA is sufficient enough to evaluate renewable energy performance. This review contributed to the current energy literature and filled in the gap with the addition of new knowledge on assessing renewable energy research studies intensively using a formal systematic literature review process. The review revealed that the development of DEA methodologies and applications in renewable energy should be expanded in the future. The results obtained from this review are both beneficial and inspirational for further research regarding the DEA application in renewable energy and provide valuable input for policymakers in decision-making processes.

1.
H.
Li
,
C.
Chen
,
W. D.
Cook
,
J.
Zhang
, and
J.
Zhu
, “
Two-stage network DEA: Who is the leader?
,”
Omega
74
,
15
19
(
2018
).
2.
P.
Khoshnevis
and
P.
Teirlinck
, “
Performance evaluation of R&D active firms
,”
Socio-Econ. Plann. Sci.
61
,
16
28
(
2018
).
3.
A.
Emrouznejad
and
G.-L.
Yang
, “
A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016
,”
Socio-Econ. Plann. Sci.
61
,
4
8
(
2018
).
4.
A.
Emrouznejad
,
R.
Banker
,
S. M.
Doraisamy
, and
B.
Arabi
, “
Recent developments in data envelopment analysis and its applications
,” in
Proceedings of the 12th International Conference on Data Envelopment Analysis, DEA2014
,
Kuala Lumpur, Malaysia
(
2014
), pp.
1
437
.
5.
J. S.
Liu
,
L. Y. Y.
Lu
,
W. M.
Lu
, and
B. J. Y.
Lin
, “
A survey of DEA applications
,”
Omega
41
,
893
902
(
2013
).
6.
J. S.
Liu
,
L. Y. Y.
Lu
, and
W. M.
Lu
, “
Research fronts in data envelopment analysis
,”
Omega
58
,
33
45
(
2016
).
7.
H.
Zhou
,
Y.
Yang
,
Y.
Chen
, and
J.
Zhu
, “
Data envelopment analysis application in sustainability: The origins, development and future directions
,”
Eur. J. Oper. Res.
264
,
1
16
(
2018
).
8.
H.
Ahn
,
M.
Afsharian
,
A.
Emrouznejad
, and
R.
Banker
, “
Recent developments on the use of DEA in the public sector
,”
Socio-Econ. Plann. Sci.
61
,
1
3
(
2018
).
9.
K.
Kim
,
D.
Joo
,
S.
Park
,
Y.
Zhang
, and
A.
Sultanov
, “
Measuring the efficiency of the investment for renewable energy in Korea using data envelopment analysis
,”
Renewable Sustainable Energy Rev.
47
,
694
702
(
2015
).
10.
E.
Houshyar
,
M. J.
Sheikh Davoodi
, and
S. M.
Nassiri
, “
Energy efficiency for wheat production using data envelopment analysis (DEA) technique
,”
J. Agric. Technol.
6
,
663
672
(
2010
).
11.
S. H.
Mousavi-Avval
,
S.
Rafiee
,
A.
Jafari
, and
A.
Mohammadi
, “
Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach
,”
Energy
36
,
2765
2772
(
2011
).
12.
A.
Mohammadi
,
S.
Rafiee
,
S. S.
Mohtasebi
,
S. H.
Mousavi Avval
, and
H.
Rafiee
, “
Energy efficiency improvement and input cost saving in kiwifruit production using data envelopment analysis approach
,”
Renewable Energy
36
,
2573
2579
(
2011
).
13.
Y.
Zeng
,
W.
Guo
, and
F.
Zhang
, “
Comprehensive evaluation of renewable energy technical plans based on data envelopment analysis
,”
Energy Procedia
158
,
3583
3588
(
2019
).
14.
Y.
Zeng
,
W.
Guo
,
H.
Wang
, and
F.
Zhang
, “
A two-stage evaluation and optimization method for renewable energy development based on data envelopment analysis
,”
Appl. Energy
262
,
114363
(
2020
).
15.
S.
Shafiei Kaleibari
,
R.
Gharizadeh Beiragh
,
R.
Alizadeh
, and
M.
Solimanpur
, “
A framework for performance evaluation of energy supply chain by a compatible network data envelopment analysis model
,”
Sci. Iran.
23
,
1904
1917
(
2016
).
16.
R.
Alizadeh
,
R.
Gharizadeh Beiragh
,
L.
Soltanisehat
,
E.
Soltanzadeh
, and
P. D.
Lund
, “
Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach
,”
Energy Econ.
91
,
104894
(
2020
).
17.
R. G.
Beiragh
,
R.
Alizadeh
,
S. S.
Kaleibari
,
F.
Cavallaro
,
S. H.
Zolfani
,
R.
Bausys
, and
A.
Mardani
, “
An integrated multi-criteria decision making model for sustainability performance assessment for insurance companies
,”
Sustainability
12
,
789
724
(
2020
).
18.
R.
Ramanathan
, “
Comparative risk assessment of energy supply technologies: A data envelopment analysis approach
,”
Energy
26
,
197
203
(
2001
).
19.
P.
Zhou
,
B. W.
Ang
, and
K. L.
Poh
, “
A survey of data envelopment analysis in energy and environmental studies
,”
Eur. J. Oper. Res.
189
,
1
18
(
2008
).
20.
A.
Mardani
,
E. K.
Zavadskas
,
D.
Streimikiene
,
A.
Jusoh
, and
M.
Khoshnoudi
, “
A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency
,”
Renewable Sustainable Energy Rev.
70
,
1298
1322
(
2017
).
21.
T.
Sueyoshi
and
M.
Goto
, “
World trend in energy: An extension to DEA applied to energy and environment
,”
J. Econ. Struct.
6
,
13
(
2017
).
22.
M. J.
Farrell
, “
The measurement of productive efficiency
,”
J. R. Stat. Soc. Ser. A
120
,
253
290
(
1957
).
23.
A.
Charnes
,
W. W.
Cooper
, and
E.
Rhodes
, “
Measuring the efficiency of decision making units
,”
Eur. J. Oper. Res.
2
,
429
444
(
1978
).
24.
W. W.
Cooper
,
L. M.
Seiford
, and
K.
Tone
,
Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software
(
Kluwer Academic Publishers
,
1999
).
25.
W. W.
Cooper
,
L. M.
Seiford
, and
K.
Tone
,
Data Envelopment Analysis: A comprehensive text with models, applications, references and DEA-solver software
, 2nd ed. (
Springer Science+Business Media
,
LLC
,
2007
).
26.
H. O.
Fried
,
C. A. K.
Lovell
, and
S. S.
Schmidt
,
The Measurement of Productive Efficiency and Productivity Growth
(
Oxford University Press, Inc
.,
2008
).
27.
R. D.
Banker
,
A.
Charnes
, and
W. W.
Cooper
, “
Some models for estimating technical and scale inefficiencies in data envelopment analysis
,”
Manage. Sci.
30
,
1078
1092
(
1984
).
28.
R.
Ramanathan
,
An Introduction to Data Envelopment Analysis: A Tool for Performance Measurement
(
Sage Publications India Pvt. Ltd
.,
New Delhi
,
2003
).
29.
W. W.
Cooper
,
L. M.
Seiford
, and
J.
Zhu
,
Handbook on Data Envelopment Analysis
(
Springer
,
2011
).
30.
F. R.
Førsund
, “
Economic interpretations of DEA
,”
Socio-Econ. Plann. Sci.
61
,
9
15
(
2018
).
31.
D.
Moher
,
A.
Liberati
,
J.
Tetzlaff
,
D. G.
Altman
, and
The PRISMA Group
,
PLoS Med.
6
,
1000097
(
2009
).
32.
D.
Moher
,
A.
Liberati
,
J.
Tetzlaff
, and
D. G.
Altman
, “
Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement
,”
Brit. Med. J.
339
,
b2535
(
2009
).
33.
University of North Carolina, Chapel Hill
, http://guides.lib.unc.edu/systematic-reviews/prisma for Systematic Reviews—PRISMA statement,
2018
.
34.
International Energy Agency,
http://www.iea.org/papers/2006/renewable_factsheet.pdf
for Renewables in Global Energy Supply: An IEA Fact Sheet
,
2007
.
35.
T.
Chien
and
J. L.
Hu
, “
Renewable energy and macroeconomic efficiency of OECD and non-OECD economies
,”
Energy Policy
35
,
3606
3615
(
2007
).
36.
J. R.
San Cristóbal
, “
A multi criteria data envelopment analysis model to evaluate the efficiency of the renewable energy technologies
,”
Renewable Energy
36
,
2742
2746
(
2011
).
37.
M. E.
Baysal
,
A.
Sarucan
,
C.
Kahraman
, and
O.
Engin
, “
The selection of renewable energy power plant technology using fuzzy data envelopment analysis
,” in
Proceedings of the World Congress on Engineering 2011-WCE 2011
, 6–8 July
2011
, Vol.
II
, pp.
1140
1143
.
38.
G. E.
Halkos
and
N. G.
Tzeremes
, “
Analyzing the Greek renewable energy sector: A Data envelopment analysis approach
,”
Renewable Sustainable Energy Rev.
16
,
2884
2893
(
2012
)..
39.
M. E.
Lins
,
L. B.
Oliveira
,
A. C. M.
Da Silva
, and
L. P.
Rosa
, “
Performance assessment of alternative energy resources in Brazilian power sector using data envelopment analysis
,”
Renewable Sustainable Energy Rev.
16
,
1
2
(
2012
).
40.
A.
Aldea
,
A.
Ciobanu
, and
I.
Stancu
, “
The renewable energy development: A non-parametric efficiency analysis
,”
J. Econ. Forecasting
1
,
5
(
2012
).
41.
K.
Boubaker
, “
Renewable energy in upper North Africa: Present versus 2025-horizon perspectives optimization using a data envelopment analysis (DEA) framework
,”
Renewable Energy
43
,
364
(
2012
).
42.
C.
Lo Storto
and
G.
Ferruzzi
, “
Benchmarking economical efficiency of renewable energy power plants: A data envelopment analysis approach
,”
Adv. Mater. Res.
772
,
699
(
2013
).
43.
J. P.
Vazhayil
and
R.
Balasubramanian
, “
Optimization of India's power sector strategies using weight-restricted stochastic data envelopment analysis
,”
Energy Policy
56
,
456
465
(
2013
).
44.
A. N.
Menegaki
, “
Growth and renewable energy in Europe: Benchmarking with data envelopment analysis
,”
Renewable Energy
60
,
363
369
(
2013
).
45.
F.
Cucchiella
and
M.
Gastaldi
, “
Data envelopment analysis to compare renewable energy efficiency in the Italian regions
,”
Adv. Mater. Res.
912–914
,
1607
1611
(
2014
).
46.
S.
Suzuki
, “
Improvement restriction data envelopment analysis for new energy in Japan
,” in
Proceedings of the 54th Congress of the European Regional Science Association: Regional Development and Globalization: Best Practices
,
St. Petersburg, Russia
, 26–29 August
2014
.
47.
H.-H.
Kim
,
D.-J.
Lee
,
K.-T.
Kim
, and
S.-J.
Park
, “
Measuring the Efficiency of investment in the deployment and technology development of renewable energy in Korea using the DEA
,”
J. Korean Inst. Ind. Eng.
40
,
358
365
(
2014
).
48.
F.
Poorahangaryana
,
A.
Shahbi
, and
E.
Nabiee
, “
The evaluation of renewable energy power using hybrid model of neural network and data envelopment analysis (neuro-DEA)
,”
J. Appl. Res. Ind. Eng.
1
,
19
27
(
2014
).
49.
X.
Ma
,
B.
Zeng
,
Y.
Zhang
,
Y.
Li
, and
Z.
Liu
, “
Comprehensive evaluation of renewable energy for power projects based on CA-DEA model
,” in
Proceedings of the 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT)
,
Changsha, China
, 26–29 November
2015
, pp.
1848
1853
.
50.
C.
Woo
,
Y.
Chung
,
D.
Chun
,
H.
Seo
, and
S.
Hong
, “
The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries
,”
Renewable Sustainable Energy Rev.
47
,
367
376
(
2015
).
51.
E.
Zografidou
,
K.
Petridis
,
G.
Arabatzis
, and
P. K.
Dey
, “
Optimal design of the renewable energy map of Greece using weighted goal-programming and data envelopment analysis
,”
Comput. Oper. Res.
66
,
313
326
(
2016
).
52.
Á.
Galán-Martín
,
G.
Guillén-Gosálbez
,
L.
Stamford
, and
A.
Azapagic
, “
Enhanced data envelopment analysis for sustainability assessment: A novel methodology and application to electricity technologies
,”
Comput. Chem. Eng.
90
,
188
200
(
2016
).
53.
B. C.
Ervural
,
B.
Ervural
, and
S.
Zaim
, “
Energy efficiency evaluation of provinces in Turkey using data envelopment analysis
,”
Procedia—Soc. Behav. Sci.
235
,
139
148
(
2016
).
54.
X.
Wang
,
Z.
Li
,
H.
Meng
, and
J.
Wu
, “
Identification of key energy efficiency drivers through global city benchmarking: A data driven approach
,”
Appl. Energy
190
,
18
28
(
2017
).
55.
L.
Gan
,
D.
Xu
,
L.
Hu
, and
L.
Wang
, “
Economic feasibility analysis for renewable energy project using an integrated TFN-AHP-DEA approach on the basis of consumer utility
,”
Energies
10
,
2089
(
2017
).
56.
C. L.
Storto
, “
Congestion effect on renewable energy production efficiency in Europe
,” in
Proceedings of the 21st Innovative Manufacturing Engineering and Energy International Conference
(
2017
), Vol.
112
, p.
10016
.
57.
Ü.
Sağlam
, “
The efficiency ranking of renewable energy sources with data envelopment analysis
,” in
Proceedings of 2018 Annual Meeting of the Decision Sciences Institute Proceedings
(
2017
).
58.
M.
Meleddu
and
M.
Pulina
, “
Public spending on renewable energy in Italian regions
,”
Renewable Energy
115
,
1086
1098
(
2018
).
59.
A.
Mezősi
,
L.
Szabó
, and
S.
Szabó
, “
Cost-efficiency benchmarking of European renewable electricity support schemes
,”
Renewable Sustainable Energy Rev.
98
,
217
(
2018
).
60.
H.
Park
and
C.
Kim
, “
Do shifts in renewable energy operation policy affect efficiency: Korea's shift from FIT to RPS and its results
,”
Sustainability
10
,
1723
(
2018
).
61.
F.
Suzana
,
M.
Chachuli
,
S.
Mat
, and
N.
Ahmad
, “
Performance evaluation of renewable energy R&D activities in Malaysia
,”
Renewable Energy
163
,
544
560
(
2021
).
62.
A.
Azadeh
,
S. F.
Ghaderi
, and
A.
Maghsoudi
, “
Location optimization of solar plants by an integrated hierarchical DEA PCA approach
,”
Energy Policy
36
,
3993
4004
(
2008
).
63.
A.
Azadeh
,
M.
Sheikhalishahi
, and
S. M.
Asadzadeh
, “
A flexible neural network-fuzzy data envelopment analysis approach for location optimization of solar plants with uncertainty and complexity
,”
Renewable Energy
36
,
3394
3401
(
2011
).
64.
H.
Chueh
and
J.
Jheng
, “
Applying data envelopment analysis to evaluation of Taiwanese solar cell industry operational performance
,”
Int. J. Sci. Inf. Technol.
4
,
1
8
(
2012
).
65.
T.
Sueyoshi
and
M.
Goto
, “
Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis
,”
Energy Econ.
42
,
271
288
(
2014
).
66.
A.
Azadeh
,
M.
Sheikhalishahi
, and
S. M.
Asadzadeh
, “
A flexible neural network-fuzzy data envelopment analysis approach for location optimization of solar plants with uncertainty and complexity
,” in
Proceedings of the Fifth International Conference on Industrial Engineering and Operations Management (IEOM) Dubai, United Arab Emirates (UAE)
, 3–5 March
2015
, pp.
1505
1509
.
67.
D. D.
Wang
and
T.
Sueyoshi
, “
Assessment of large commercial rooftop photovoltaic system installations: Evidence from California
,”
Appl. Energy
188
,
45
55
(
2017
).
68.
Z.
Wang
,
Y.
Li
,
K.
Wang
, and
Z.
Huang
, “
Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis
,”
Renewable Sustainable Energy Rev.
76
,
1153
1162
(
2017
).
69.
S.
Ghosh
,
V. K.
Yadav
,
V.
Mukherjee
, and
P.
Yadav
, “
Evaluation of relative impact of aerosols on photovoltaic cells through combined Shannon's entropy and data envelopment analysis (DEA)
,”
Renewable Energy
105
,
344
353
(
2017
).
70.
A.
Haeri
, “
Evaluation and comparison of crystalline silicon and thin-film photovoltaic solar cells technologies using data envelopment analysis
,”
J. Mater. Sci.: Mater. Electron.
28
,
6
11
(
2017
).
71.
A.
de Villiers
and
H. J.
Vermeulen
, “
Sector performance monitoring in utility-scale solar farms using data envelopment analysis
,” in
Proceedings of 2017 IEEE PES PowerAfrica
,
Accra, Ghana
, 27–30 June
2017
, pp.
192
197
.
72.
E.
Dehghani
,
M. S.
Jabalameli
,
M. S.
Pishvaee
, and
A.
Jabarzadeh
, “
Integrating information of the efficient and anti-efficient frontiers in DEA analysis to assess location of solar plants: A case study in Iran
,”
J. Ind. Syst. Eng.
11
,
163
(
2018
).
73.
A.
Azadeh
,
S. F.
Ghaderi
, and
M. R.
Nasrollahi
, “
Location optimization of wind plants in Iran by an integrated hierarchical data envelopment analysis
,”
Renewable Energy
36
,
1621
1631
(
2011
).
74.
G.
Ertek
,
M. M.
Tunç
,
E.
Kurtaraner
, and
D.
Kebude
, “
Insights into the efficiencies of on-shore wind turbines: A data-centric analysis
,” in
Proceedings of INISTA 2012—International Symposium on Innovations in Intelligent Systems and Applications
(
2012
).
75.
D.
Iribarren
,
M.
Martín-Gamboa
, and
J.
Dufour
, “
Environmental benchmarking of wind farms according to their operational performance
,”
Energy
61
,
589
597
(
2013
).
76.
D.
Iribarren
,
I.
Vázquez-Rowe
,
B.
Rugani
, and
E.
Benetto
, “
On the feasibility of using emergy analysis as a source of benchmarking criteria through data envelopment analysis: A case study for wind energy
,”
Energy
67
,
527
537
(
2014
).
77.
N.
Ederer
, “
Evaluating capital and operating cost efficiency of offshore wind farms: A DEA approach
,”
Renewable Sustainable Energy Rev.
42
,
1034
1046
(
2015
).
78.
H.
Sameie
and
M.
Arvan
, “
A simulation-based data envelopment analysis (DEA) model to evaluate wind plants locations
,”
Decis. Sci. Lett.
4
,
165
180
(
2015
).
79.
Y.
Wu
,
Y.
Hu
,
X.
Xiao
, and
C.
Mao
, “
Efficiency assessment of wind farms in China using two-stage data envelopment analysis
,”
Energy Convers. Manage.
123
,
46
55
(
2016
).
80.
Ü.
Sağlam
, “
Assessment of the productive efficiency of large wind farms in the United States: An application of two-stage data envelopment analysis
,”
Energy Convers. Manage.
153
,
188
214
(
2017
).
81.
Ü.
Sağlam
, “
A two-stage data envelopment analysis model for efficiency assessments of 39 state's wind power in the United States
,”
Energy Convers. Manage.
146
,
52
67
(
2017
).
82.
D.
Niu
,
Z.
Song
,
X.
Xiao
, and
Y.
Wang
, “
Analysis of wind turbine micrositing efficiency: An application of two-subprocess data envelopment analysis method
,”
J. Cleaner Prod.
170
,
193
204
(
2018
).
83.
H. W.
Chen
,
N.
Bin Chang
,
J. C.
Chen
, and
S. J.
Tsai
, “
Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis
,”
Waste Manage.
30
,
1371
1381
(
2010
).
84.
N.
Rogge
and
S.
De Jaeger
, “
Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: A shared input DEA-model
,”
Waste Manage.
32
,
1968
1978
(
2012
).
85.
Y. T.
Chen
and
C. C.
Chen
, “
The privatization effect of MSW incineration services by using data envelopment analysis
,”
Waste Manage.
32
,
595
602
(
2012
).
86.
M. R.
Khadivi
and
S. M. T.
Fatemi Ghomi
, “
Solid waste facilities location using of analytical network process and data envelopment analysis approaches
,”
Waste Manage.
32
,
1258
1265
(
2012
).
87.
D. S.
Chang
,
W.
Liu
, and
L. T.
Yeh
, “
Incorporating the learning effect into data envelopment analysis to measure MSW recycling performance
,”
Eur. J. Oper. Res.
229
,
496
504
(
2013
).
88.
N.
Rogge
and
S.
De Jaeger
, “
Measuring and explaining the cost efficiency of municipal solid waste collection and processing services
,”
Omega
41
,
653
664
(
2013
).
89.
P.
Albores
,
K.
Petridis
, and
P. K.
Dey
, “
Analysing efficiency of waste to energy systems: Using data envelopment analysis in municipal solid waste management
,”
Procedia Environ. Sci.
35
,
265
278
(
2016
).
90.
P.
Limleamthong
,
S.
Manfredi
,
J.
Crist
, and
G.
Guill
, “
Methodology for combined use of data envelopment analysis and life cycle assessment applied to food waste management
,”
J. Cleaner Prod.
135
,
158
168
(
2016
).
91.
A.
Sarra
,
M.
Mazzocchitti
, and
A.
Rapposelli
, “
Evaluating joint environmental and cost performance in municipal waste management systems through data envelopment analysis: Scale effects and policy implications
,”
Ecol. Indic.
73
,
756
771
(
2017
).
92.
A.
Guerrini
,
P.
Carvalho
,
G.
Romano
,
R.
Cunha Marques
, and
C.
Leardini
, “
Assessing efficiency drivers in municipal solid waste collection services through a non-parametric method
,”
J. Cleaner Prod.
147
,
431
441
(
2017
).
93.
S. K.
Lee
,
G.
Mogi
, and
K. S.
Hui
, “
A fuzzy analytic hierarchy process (AHP)/data envelopment analysis (DEA) hybrid model for efficiently allocating energy R&D resources: In the case of energy technologies against high oil prices
,”
Renewable Sustainable Energy Rev.
21
,
347
355
(
2013
).
94.
N.
Ueasin
,
S. Y.
Liao
, and
A.
Wongchai
, “
The technical efficiency of rice husk power generation in Thailand: Comparing data envelopment analysis and stochastic frontier analysis
,”
Energy Procedia
75
,
2757
2763
(
2015
).
95.
M.
Martín-Gamboa
,
D.
Iribarren
,
A.
Susmozas
, and
J.
Dufour
, “
Delving into sensible measures to enhance the environmental performance of biohydrogen: A quantitative approach based on process simulation, life cycle assessment and data envelopment analysis
,”
Bioresour. Technol.
214
,
376
385
(
2016
).
96.
Q.
Yan
,
Y.
Wan
,
J.
Yuan
,
J.
Yin
,
T.
Balezentis
, and
D.
Streimikiene
, “
Economic, and technical efficiency of the biomass industry in China: A network data envelopment analysis model involving externalities
,”
Energies
10
,
1418
(
2017
).
97.
D. K.
Jha
and
R.
Shrestha
, “
Measuring efficiency of hydropower plants in Nepal using data envelopment analysis
,”
IEEE Trans. Power Syst.
21
,
1502
1511
(
2006
).
98.
C. P.
Barros
, “
Efficiency analysis of hydroelectric generating plants: A case study for Portugal
,”
Energy Econ.
30
,
59
75
(
2008
).
99.
A.
Sözen
,
I.
Alp
, and
C.
Kilinc
, “
Efficiency assessment of the hydropower plants in Turkey by using data envelopment analysis
,”
Renewable Energy
46
,
192
202
(
2012
).
100.
J.
Ren
,
S.
Tan
,
L.
Dong
,
A.
Mazzi
,
A.
Scipioni
, and
B. K.
Sovacool
, “
Determining the life cycle energy efficiency of six biofuel systems in China: A data envelopment analysis
,”
Bioresour. Technol.
162
,
1
7
(
2014
).
101.
R.
Madlener
,
C. H.
Antunes
, and
L. C.
Dias
, “
Assessing the performance of biogas plants with multi-criteria and data envelopment analysis
,”
Eur. J. Oper. Res.
197
,
1084
1094
(
2009
).
102.
A.
Mostafaeipour
,
M.-E.
Ramazankhani
,
H.
Hosseininasab
,
M.-B.
Fakhrzad
,
H. R.
Arabnia
, and
A.
Sedaghat
, “
A thorough evaluation of implementing geothermal energy for producing hydrogen in Iran using data envelopment analysis (DEA)
,” in
Proceedings of the International Conference on Industrial Engineering and Operations Management
(
2017
), pp.
2289
2300
.
103.
T.
Coelli
,
A Guide to DEAP Version 2.1: A Data Envelopment Analysis (Computer) Program
(
University of New England
,
1996
).
104.
T. J.
Coelli
,
D. S.
Prasada Rao
,
C. J.
O'Donnell
, and
G. E.
Battese
,
An Introduction to Efficiency and Productivity Analysis
(
Springer
,
2005
).
105.
R.
Fare
,
S.
Grosskopf
,
M.
Norris
, and
Z.
Zhang
, “
Productivity growth, technical progress, and efficiency change in industrialized countries
,”
Am. Econ. Rev.
84
,
66
83
(
1994
).
106.
N. K.
Avkiran
,
Productivity Analysis in the Service Sector with Data Envelopment Analysis, 3rd ed.
(
The University of Queensland
,
Australia
,
2006
).
107.
M. I.
Salleh
, “
An empirical analysis of efficiency and productivity changes in Malaysian public higher education institutions
,” Ph.D. thesis (
University of Wollongong
,
2012
).
108.
M. S.
Pakkar
, “
Using DEA and AHP for hierarchical structures of data
,”
Ind. Eng. Manage. Syst.
15
,
49
62
(
2016
).
109.
L.
Simar
and
P. W.
Wilson
, “
sensitivity analysis of efficiency scores: how to bootstrap in non-parametric frontier models
,”
Manage. Sci.
44
,
49
61
(
1998
).
You do not currently have access to this content.