The spatial scale mismatch between gridded irradiance products and in situ measurements is perhaps the least understood topic in solar resource assessment. However, it has a profound impact on virtually all solar applications that involve satellite-derived or reanalysis irradiance data. This paper investigates spatial scale mismatch through a kriging-based upscaling method. Point-location measurements from a monitoring network are upscaled to the size of a satellite-derived irradiance footprint. Subsequently, satellite-derived irradiance is validated against both the nearest point-location measurements and the upscaled areal averages, and the error reduction can, thus, be used to quantify the amount of spatial scale mismatch. In that, a new measure is proposed. The empirical part of the paper considers a synoptic scale satellite-derived irradiance product, namely, National Aeronautics and Space Administration's Clouds and the Earth's Radiant Energy System synoptic surface shortwave flux, and a mesoscale monitoring network, namely, the Oklahoma Mesonet. Based on two years of hourly data and the proposed measure, the spatial scale mismatch is found to be 45% for the U.S. state of Oklahoma.

1.
D.
Yang
and
C. A.
Gueymard
, “
Producing high-quality solar resource maps by integrating high- and low-accuracy measurements using Gaussian processes
,”
Renewable Sustainable Energy Rev.
113
,
109260
(
2019
).
2.
G. M.
Yagli
,
D.
Yang
,
O.
Gandhi
, and
D.
Srinivasan
, “
Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?
,”
Appl. Energy
259
,
114122
(
2020
).
3.
D.
Yang
, “
Post-processing of NWP forecasts using ground or satellite-derived data through kernel conditional density estimation
,”
J. Renewable Sustainable Energy
11
,
026101
(
2019
).
4.
D.
Yang
and
R.
Perez
, “
Can we gauge forecasts using satellite-derived solar irradiance?
,”
J. Renewable Sustainable Energy
11
,
023704
(
2019
).
5.
J. M.
Bright
, “
Solcast: Validation of a satellite-derived solar irradiance dataset
,”
Sol. Energy
189
,
435
449
(
2019
).
6.
B.
Babar
,
R.
Graversen
, and
T.
Boström
, “
Solar radiation estimation at high latitudes: Assessment of the CMSAF databases, ASR and ERA5
,”
Sol. Energy
182
,
397
411
(
2019
).
7.
D.
Yang
, “
A correct validation of the National Solar Radiation Data Base (NSRDB)
,”
Renewable Sustainable Energy Rev.
97
,
152
155
(
2018
).
8.
A.
Damiani
,
H.
Irie
,
T.
Horio
,
T.
Takamura
,
P.
Khatri
,
H.
Takenaka
,
T.
Nagao
,
T. Y.
Nakajima
, and
R. R.
Cordero
, “
Evaluation of Himawari-8 surface downwelling solar radiation by ground-based measurements
,”
Atmos. Meas. Tech.
11
,
2501
2521
(
2018
).
9.
D.
Yang
,
S.
Alessandrini
,
J.
Antonanzas
,
F.
Antonanzas-Torres
,
V.
Badescu
,
H. G.
Beyer
,
R.
Blaga
,
J.
Boland
,
J. M.
Bright
,
C. F.
Coimbra
,
M.
David
,
Â.
Frimane
,
C. A.
Gueymard
,
T.
Hong
,
M. J.
Kay
,
S.
Killinger
,
J.
Kleissl
,
P.
Lauret
,
E.
Lorenz
,
D.
van der Meer
,
M.
Paulescu
,
R.
Perez
,
O.
Perpiñán-Lamigueiro
,
I. M.
Peters
,
G.
Reikard
,
D.
Renné
,
Y.-M.
Saint-Drenan
,
Y.
Shuai
,
R.
Urraca
,
H.
Verbois
,
F.
Vignola
,
C.
Voyant
, and
J.
Zhang
, “
Verification of deterministic solar forecasts
,”
Sol. Energy
210
,
20
37
(
2020
).
10.
P.
Lauret
,
M.
David
, and
P.
Pinson
, “
Verification of solar irradiance probabilistic forecasts
,”
Sol. Energy
194
,
254
271
(
2019
).
11.
A. H.
Murphy
and
R. L.
Winkler
, “
A general framework for forecast verification
,”
Mon. Weather Rev.
115
,
1330
1338
(
1987
).
12.
D.
Yang
and
J. M.
Bright
, “
Worldwide validation of 8 satellite-derived and reanalysis solar radiation products: A preliminary evaluation and overall metrics for hourly data over 27 years
,”
Sol. Energy
210,
3
19
(
2020
).
13.
D.
Yang
, “
Standard of reference in operational day-ahead deterministic solar forecasting
,”
J. Renewable Sustainable Energy
11
,
053702
(
2019
).
14.
X.
Wu
,
Q.
Xiao
,
J.
Wen
,
D.
You
, and
A.
Hueni
, “
Advances in quantitative remote sensing product validation: Overview and current status
,”
Earth-Sci. Rev.
196
,
102875
(
2019
).
15.
B.
Molero
,
D. J.
Leroux
,
P.
Richaume
,
Y. H.
Kerr
,
O.
Merlin
,
M. H.
Cosh
, and
R.
Bindlish
, “
Multi-timescale analysis of the spatial representativeness of in situ soil moisture data within satellite footprints
,”
J. Geophys. Res.
123
,
3
21
(
2018
).
16.
G.
Huang
,
Z.
Li
,
X.
Li
,
S.
Liang
,
K.
Yang
,
D.
Wang
, and
Y.
Zhang
, “
Estimating surface solar irradiance from satellites: Past, present, and future perspectives
,”
Remote Sens. Environ.
233
,
111371
(
2019
).
17.
M.
Sengupta
,
Y.
Xie
,
A.
Lopez
,
A.
Habte
,
G.
Maclaurin
, and
J.
Shelby
, “
The National Solar Radiation Data Base (NSRDB)
,”
Renewable Sustainable Energy Rev.
89
,
51
60
(
2018
).
18.
Z.
Qu
,
A.
Oumbe
,
P.
Blanc
,
B.
Espinar
,
G.
Gesell
,
B.
Gschwind
,
L.
Klüser
,
M.
Lefèvre
,
L.
Saboret
,
M.
Schroedter-Homscheidt
, and
L.
Wald
, “
Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat-4 method
,”
Meteorol. Z.
26
,
33
57
(
2017
).
19.
D.
Yang
,
E.
Wu
, and
J.
Kleissl
, “
Operational solar forecasting for the real-time market
,”
Int. J. Forecasting
35
,
1499
1519
(
2019
).
20.
J. M.
Bright
, “
The impact of globally diverse GHI training data: Evaluation through application of a simple Markov chain downscaling methodology
,”
J. Renewable Sustainable Energy
11
,
023703
(
2019
).
21.
F.
Antonanzas-Torres
,
F. J.
Martínez-de Pisón
,
J.
Antonanzas
, and
O.
Perpinan
, “
Downscaling of global solar irradiation in complex areas in R
,”
J. Renewable Sustainable Energy
6
,
063105
(
2014
).
22.
M.
Bessafi
,
V.
Oree
,
A.
Khoodaruth
,
G.
Jumaux
,
F.
Bonnardot
,
P.
Jeanty
,
M.
Delsaut
,
J.-P.
Chabriat
, and
M. Z.
Dauhoo
, “
Downscaling solar irradiance using DEM-based model in young volcanic islands with rugged topography
,”
Renewable Energy
126
,
584
593
(
2018
).
23.
R.
Perez
,
S.
Kivalov
,
J.
Schlemmer
,
K.
Hemker
, and
T. E.
Hoff
, “
Short-term irradiance variability: Preliminary estimation of station pair correlation as a function of distance
,”
Sol. Energy
86
,
2170
2176
(
2012
).
24.
T. E.
Hoff
and
R.
Perez
, “
Modeling PV fleet output variability
,”
Sol. Energy
86
,
2177
2189
(
2012
).
25.
T. E.
Hoff
and
R.
Perez
, “
Quantifying PV power output variability
,”
Sol. Energy
84
,
1782
1793
(
2010
).
26.
D.
Yang
,
J.
Kleissl
,
C. A.
Gueymard
,
H. T. C.
Pedro
, and
C. F. M.
Coimbra
, “
History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining
,”
Sol. Energy
168
,
60
101
(
2018
).
27.
D.
Yang
, “
A guideline to solar forecasting research practice: Reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES)
,”
J. Renewable Sustainable Energy
11
,
022701
(
2019
).
28.
R. A.
McPherson
,
C. A.
Fiebrich
,
K. C.
Crawford
,
J. R.
Kilby
,
D. L.
Grimsley
,
J. E.
Martinez
,
J. B.
Basara
,
B. G.
Illston
,
D. A.
Morris
,
K. A.
Kloesel
,
A. D.
Melvin
,
H.
Shrivastava
,
J. M.
Wolfinbarger
,
J. P.
Bostic
,
D. B.
Demko
,
R. L.
Elliott
,
S. J.
Stadler
,
J. D.
Carlson
, and
A. J.
Sutherland
, “
Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet
,”
J. Atmos. Oceanic Technol.
24
,
301
321
(
2007
).
29.
F. V.
Brock
,
K. C.
Crawford
,
R. L.
Elliott
,
G. W.
Cuperus
,
S. J.
Stadler
,
H. L.
Johnson
, and
M. D.
Eilts
, “
The Oklahoma Mesonet: A technical overview
,”
J. Atmos. Oceanic Technol.
12
,
5
19
(
1995
).
30.
B. A.
Wielicki
,
B. R.
Barkstrom
,
E. F.
Harrison
,
R. B.
Lee
,
G. L.
Smith
, and
J. E.
Cooper
, “
Clouds and the Earth's Radiant Energy System (CERES): An earth observing system experiment
,”
Bull. Am. Meteorol. Soc.
77
,
853
868
(
1996
).
31.
M. A.
Shafer
,
C. A.
Fiebrich
,
D. S.
Arndt
,
S. E.
Fredrickson
, and
T. W.
Hughes
, “
Quality assurance procedures in the Oklahoma Mesonetwork
,”
J. Atmos. Oceanic Technol.
17
,
474
494
(
2000
).
32.
D.
Hao
,
G. R.
Asrar
,
Y.
Zeng
,
Q.
Zhu
,
J.
Wen
,
Q.
Xiao
, and
M.
Chen
, “
Estimating hourly land surface downward shortwave and photosynthetically active radiation from DSCOVR/EPIC observations
,”
Remote Sens. Environ.
232
,
111320
(
2019
).
33.
D.
Yang
and
C. A.
Gueymard
, “
Ensemble model output statistics for the separation of direct and diffuse components from 1-min global irradiance
,”
Sol. Energy
208
,
591
603
(
2020
).
34.
H.
Quan
and
D.
Yang
, “
Probabilistic solar irradiance transposition models
,”
Renewable Sustainable Energy Rev.
125
,
109814
(
2020
).
35.
D.
Yang
, “
Ensemble model output statistics as a probabilistic site-adaptation tool for satellite-derived and reanalysis solar irradiance
,”
J. Renewable Sustainable Energy
12
,
016102
(
2020
).
36.
D.
Yang
, “
Ensemble model output statistics as a probabilistic site-adaptation tool for solar irradiance: A revisit
,”
J. Renewable Sustainable Energy
12
,
036101
(
2020
).
37.
D.
Yang
, “
Kriging for NSRDB PSM version 3 satellite-derived solar irradiance
,”
Sol. Energy
171
,
876
883
(
2018
).
38.
D.
Yang
, “
Spatial prediction using kriging ensemble
,”
Sol. Energy
171
,
977
982
(
2018
).
39.
B.
Gschwind
,
L.
Wald
,
P.
Blanc
,
M.
Lefèvre
,
M.
Schroedter-Homscheidt
, and
A.
Arola
, “
Improving the McClear model estimating the downwelling solar radiation at ground level in cloud-free conditions–McClear-v3
,”
Meteorol. Z.
28
,
147
163
(
2019
).
40.
M.
Lefèvre
,
A.
Oumbe
,
P.
Blanc
,
B.
Espinar
,
B.
Gschwind
,
Z.
Qu
,
L.
Wald
,
M.
Schroedter-Homscheidt
,
C.
Hoyer-Klick
,
A.
Arola
,
A.
Benedetti
,
J. W.
Kaiser
, and
J.-J.
Morcrette
, “
McClear: A new model estimating downwelling solar radiation at ground level in clear-sky conditions
,”
Atmos. Meas. Tech.
6
,
2403
2418
(
2013
).
41.
G.
Blöschl
and
M.
Sivapalan
, “
Scale issues in hydrological modelling: A review
,”
Hydrol. Processes
9
,
251
290
(
1995
).
42.
H. T. C.
Pedro
,
D. P.
Larson
, and
C. F. M.
Coimbra
, “
A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods
,”
J. Renewable Sustainable Energy
11
,
036102
(
2019
).
43.
I.
Orlanski
, “
A rational subdivision of scales for atmospheric processes
,”
Bull. Am. Meteorol. Soc.
56
,
527
530
(
1975
).
44.
J.
Bosch
,
Y.
Zheng
, and
J.
Kleissl
, “
Deriving cloud velocity from an array of solar radiation measurements
,”
Sol. Energy
87
,
196
203
(
2013
).
45.
A. H.
Murphy
, “
What is a good forecast? An essay on the nature of goodness in weather forecasting
,”
Weather Forecasting
8
,
281
293
(
1993
).
46.
D.
Yang
, “
On adding and removing sensors in a solar irradiance monitoring network for areal forecasting and PV system performance evaluation
,”
Sol. Energy
155
,
1417
1430
(
2017
).
47.
D.
Yang
,
C.
Gu
,
Z.
Dong
,
P.
Jirutitijaroen
,
N.
Chen
, and
W. M.
Walsh
, “
Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging
,”
Renewable Energy
60
,
235
245
(
2013
).
48.
A. H.
Murphy
, “
General decompositions of MSE-based skill scores: Measures of some basic aspects of forecast quality
,”
Mon. Weather Rev.
124
,
2353
2369
(
1996
).
49.
R.
Mahmood
,
R.
Boyles
,
K.
Brinson
,
C.
Fiebrich
,
S.
Foster
,
K.
Hubbard
,
D.
Robinson
,
J.
Andresen
, and
D.
Leathers
, “
Mesonets: Mesoscale weather and climate observations for the United States
,”
Bull. Am. Meteorol. Soc.
98
,
1349
1361
(
2017
).

Supplementary Material

You do not currently have access to this content.