Cross-flow turbines convert kinetic power in wind or water currents to mechanical power. Unlike axial-flow turbines, the influence of geometric parameters on turbine performance is not well-understood, in part because there are neither generalized analytical formulations nor inexpensive, accurate numerical models that describe their fluid dynamics. Here, we experimentally investigate the effect of aspect ratio—the ratio of the blade span to rotor diameter—on the performance of a straight-bladed cross-flow turbine in a water channel. To isolate the effect of aspect ratio, all other non-dimensional parameters are held constant, including the relative confinement, Froude number, and Reynolds number. The coefficient of performance is found to be invariant for the range of aspect ratios tested (0.95–1.63), which we ascribe to minimal blade–support interactions for this turbine design. Finally, a subset of experiments is repeated without controlling for the Froude number, and the coefficient of performance is found to increase, a consequence of the Froude number variation that could mistakenly be ascribed to aspect ratio. This highlights the importance of a rigorous experimental design when exploring the effect of geometric parameters on cross-flow turbine performance.

1.
M. J.
Khan
,
G.
Bhuyan
,
M. T.
Iqbal
, and
J. E.
Quaicoe
, “
Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review
,”
Appl. Energy
86
,
1823
1835
(
2009
).
2.
J. O.
Dabiri
, “
Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays
,”
J. Renewable Sustainable Energy
3
,
043104
(
2011
).
3.
S.
Brusca
,
R.
Lanzafame
, and
M.
Messina
, “
Design of a vertical-axis wind turbine: How the aspect ratio affects the turbine's performance
,”
Int. J. Energy Environ. Eng.
5
,
333
340
(
2014
).
4.
Q.
Li
,
T.
Maeda
,
Y.
Kamada
,
K.
Shimizu
,
T.
Ogasawara
,
A.
Nakai
, and
T.
Kasuya
, “
Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method
,”
Energy
121
,
1
9
(
2017
).
5.
M.
Shiono
,
K.
Suzuki
, and
S.
Kiho
, “
Output characteristics of Darrieus water turbine with helical blades for tidal current generations
,” in
Proceedings of the International Offshore and Polar Engineering Conference
(
2002
), Vol.
12
, pp.
859
864
.
6.
M. R.
Castelli
,
S. D.
Betta
, and
E.
Benini
, “
Effect of blade number on a straight-bladed vertical-axis wind turbine
,”
Int. J. Aerosp. Mech. Eng.
6
,
68
74
(
2012
).
7.
Q.
Li
,
T.
Maeda
,
Y.
Kamada
,
J.
Murata
,
K.
Furukawa
, and
M.
Yamamoto
, “
Effect of number of blades on aerodynamic forces on a straight-bladed vertical axis wind turbine
,”
Energy
90
,
784
795
(
2015
).
8.
C.
Simão Ferreira
and
B.
Geurts
, “
Aerofoil optimization for vertical axis wind turbines
,”
Wind Energy
18
,
1371
1385
(
2015
).
9.
G.
Bedon
,
S. D.
Betta
, and
E.
Benini
, “
Performance-optimized airfoil for Darrieus wind turbines
,”
Renewable Energy
94
,
328
340
(
2016
).
10.
A. J.
Fiedler
and
S.
Tullis
, “
Blade offset and pitch effects on a high solidity vertical axis wind turbine
,”
Wind Eng.
33
,
237
246
(
2009
).
11.
B.
Strom
,
S.
Brunton
, and
B.
Polagye
, “
Consequences of preset pitch angle on cross-flow turbine hydrodynamics
,” in
Proceedings of the 11th European Wave and Tidal Energy Conference (
2015
).
12.
P. G.
Migliore
,
W. P.
Wolfe
, and
J. B.
Fanucci
, “
Flow curvature effects on Darrieus turbine blade aerodynamics
,”
J. Energy
4
,
49
55
(
1980
).
13.
F.
Balduzzi
,
A.
Bianchini
,
R.
Maleci
,
G.
Ferrara
, and
L.
Ferrari
, “
Blade design criteria to compensate the flow curvature effects in H-Darrieus wind turbines
,”
J. Turbomach.
137
,
011006
(
2015
).
14.
B.
Strom
,
N.
Johnson
, and
B.
Polagye
, “
Impact of blade mounting structures on cross-flow turbine performance
,”
J. Renewable Sustainable Energy
10
,
034504
(
2018
).
15.
T.
Villeneuve
,
M.
Boudreau
, and
G.
Dumas
, “
Lift enhancement and drag reduction of lifting blades through the use of end-plates and detached end-plates
,”
J. Wind Eng. Ind. Aerodyn.
184
,
391
404
(
2019
).
16.
H. C.
Tsai
and
T.
Colonius
, “
Coriolis effect on dynamic stall in a vertical axis wind turbine
,”
AIAA J.
54
,
216
226
(
2016
).
17.
A. J.
Buchner
,
M. W.
Lohry
,
L.
Martinelli
,
J.
Soria
, and
A. J.
Smits
, “
Dynamic stall in vertical axis wind turbines: Comparing experiments and computations
,”
J. Wind Eng. Ind. Aerodyn.
146
,
163
171
(
2015
).
18.
T.
Burton
,
N.
Jenkins
,
D.
Sharpe
, and
E.
Bossanyi
,
Wind Energy Handbook
, 2nd ed. (
Wiley
,
2011
).
19.
I.
Paraschivoiu
,
Ecole Polytechnique de Montreal
(
Polytechnic International Press
,
2002
).
20.
M.
Islam
,
D. S.-K.
Ting
, and
A.
Fartaj
, “
Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines
,”
Renewable Sustainable Energy Rev.
12
,
1087
1109
(
2008
).
21.
A. A.
Mohammed
,
H. M.
Ouakad
,
A. Z.
Sahin
, and
H. M.
Bahaidarah
, “
Vertical axis wind turbine aerodynamics: Summary and review of momentum models
,”
Trans. ASME J. Energy Resources Technol.
141
,
050801
(
2019
).
22.
F.
Balduzzi
,
A.
Bianchini
,
R.
Maleci
,
G.
Ferrara
, and
L.
Ferrari
, “
Critical issues in the CFD simulation of Darrieus wind turbines
,”
Renewable Energy
85
,
419
435
(
2016
).
23.
C.
Simão Ferreira
,
H. A.
Madsen
,
M.
Barone
,
B.
Roscher
,
P.
Deglaire
, and
I.
Arduin
, “
Comparison of aerodynamic models for vertical axis wind turbines
,”
J. Phys.: Conf. Ser.
524
,
012125
(
2014
).
24.
P.
Bachant
and
M.
Wosnik
, “
Modeling the near-wake of a vertical-axis cross-flow turbine with 2-D and 3-D RANS
,”
J. Renewable Sustainable Energy
8
,
053311
(
2016
).
25.
A.
Bianchini
,
F.
Balduzzi
,
P.
Bachant
,
G.
Ferrara
, and
L.
Ferrari
, “
Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: A combined numerical and experimental assessment
,”
Energy Convers. Manage.
136
,
318
328
(
2017
).
26.
M. A.
Miller
,
S.
Duvvuri
,
I.
Brownstein
,
M.
Lee
,
J. O.
Dabiri
, and
M.
Hultmark
, “
Vertical-axis wind turbine experiments at full dynamic similarity
,”
J. Fluid Mech.
844
,
707
720
(
2018
).
27.
M.
Shiono
,
K.
Suzuki
, and
S.
Kiho
, “
An experimental study of the characteristics of a Darrieus turbine for tidal power generation
,”
Electr. Eng. Jpn.
132
,
38
47
(
2000
).
28.
P.
Bachant
,
M.
Wosnik
,
B.
Gunawan
, and
V. S.
Neary
, “
Experimental study of a reference model vertical-axis cross-flow turbine
,”
PLoS One
11
,
e0163799
(
2016
).
29.
B. W.
Strom
, Ph.D. dissertation,
University of Washington
,
2019
.
30.
B.-S.
Hyun
,
D.-H.
Choi
,
J.-S.
Han
, and
J.-Y.
Jin
, “
Performance analysis and design of vertical axis tidal stream turbine
,”
J. Shipp. Ocean Eng.
2
,
191
200
(
2012
).
31.
C.
Garrett
and
P.
Cummins
, “
The efficiency of a turbine in a tidal channel
,”
J. Fluid Mech.
588
,
243
251
(
2007
).
32.
C. A.
Consul
,
R. H.
Willden
, and
S. C.
McIntosh
, “
Blockage effects on the hydrodynamic performance of a marine cross-flow turbine
,”
Philos. Trans. R. Soc. A
371
,
20120299
(
2013
).
33.
G. T.
Houlsby
and
C. R.
Vogel
, “
The power available to tidal turbines in an open channel flow
,”
Proc. Inst. Civil Eng.: Energy
170
,
12
21
(
2017
).
34.
H.
Ross
and
B.
Polagye
, “
An experimental assessment of analytical blockage corrections for turbines
,”
Renewable Energy
152
,
1328
1341
(
2020
).
35.
Y. L.
Young
,
C. M.
Harwood
,
F. M.
Montero
,
J. C.
Ward
, and
S. L.
Ceccio
, “
Ventilation of lifting bodies: Review of the physics and discussion of scaling effects
,”
Appl. Mech. Rev.
69
,
010801
(
2017
).
36.
B.
Polagye
,
B.
Strom
,
H.
Ross
,
D.
Forbush
, and
R. J.
Cavagnaro
, “
Comparison of cross-flow turbine performance under torque-regulated and speed-regulated control
,”
J. Renewable Sustainable Energy
11
,
044501
(
2019
).
37.
D. G.
Goring
and
V. I.
Nikora
, “
Despiking acoustic Doppler velocimeter data
,”
J. Hydraul. Eng.
128
,
117
126
(
2002
).
38.
O.
Gauvin-Tremblay
and
G.
Dumas
, “
Two-way interaction between river and deployed cross-flow hydrokinetic turbines
,”
J. Renewable Sustainable Energy
12
,
034501
(
2020
).
39.
P.
Bachant
and
M.
Wosnik
, “
Effects of Reynolds number on the energy conversion and near-wake dynamics of a high solidity vertical-axis cross-flow turbine
,”
Energies
9
,
73
(
2016
).
40.
F.
Maganga
,
G.
Germain
,
J.
King
,
G.
Pinon
, and
E.
Rivoalen
, “
Experimental characterisation of flow effects on marine current turbine behaviour and on its wake properties
,”
IET Renewable Power Gener.
4
,
498
509
(
2010
).
41.
T.
Blackmore
,
L. E.
Myers
, and
A. S.
Bahaj
, “
Effects of turbulence on tidal turbines: Implications to performance, blade loads, and condition monitoring
,”
Int. J. Mar. Energy
14
,
1
26
(
2016
).
42.
T.
Villeneuve
and
G.
Dumas
, “
Impact of different strut geometries on the performance of H-Darrieus vertical-axis turbines
,” in
72nd Annual Meeting of the APS Division of Fluid Dynamics (
2019
).
43.
A.
Hunt
,
C.
Stringer
, and
B.
Polagye
, “
Supplementary Material for ‘Effect of aspect ratio on cross-flow turbine performance’
,” ResearchWorks Archive (
2020
), http://hdl.handle.net/1773/45618.
You do not currently have access to this content.