Efficient and accurate wake models are required for wind plant performance modeling and the suite of engineering processes that support wind plant layout, control, and monitoring. Although many analytical and engineering wake models with low computational costs have been proposed, their ability to represent the power production of large wind plants in a wide range of atmospheric conditions is not completely understood. The following validation study reviews the underlying theory for analytical wake models, outlines quality control procedures for observational data, and compares model results with observational data from the Lillgrund Wind Plant. Lillgrund makes a valuable case study for wake modeling because of its regular arrangement and the relatively close spacing of constituent wind turbines, which lead to regular and significant wake interactions within the wind plant and the development of deep array flow conditions. Formulations for the velocity deficit, wake-added turbulence, and wake superposition methods are considered in a modular sense, yielding many possible configurations to represent wind turbine wakes, of which seven are examined in detail. Velocity deficit models that account for flow conditions in the near wake are better able to reproduce power production for wind turbines in the transitional region of the wind plant, where wind turbines experience as many as five wakes from upstream turbines. In the deep array, where power production reaches asymptotic values and wake statistics become quasi-periodic, wake superposition schemes become the largest driver in error reduction; using the linear or maximum wake superposition methods can reduce the relative root mean square error by as much as 40% in the deep array.

1.
P.
Sørensen
and
T.
Nielsen
, “
Recalibrating wind turbine wake model parameters—validating the wake model performance for large offshore wind farms
,” in
European Wind Energy Conference and Exhibition (EWEA,
2006
).
2.
R. J.
Barthelmie
,
K.
Hansen
,
S. T.
Frandsen
,
O.
Rathmann
,
J.
Schepers
,
W.
Schlez
,
J.
Phillips
,
K.
Rados
,
A.
Zervos
,
E.
Politis
 et al., “
Modelling and measuring flow and wind turbine wakes in large wind farms offshore
,”
Wind Energy
12
,
431
444
(
2009
).
3.
C. L.
Archer
,
A.
Vasel-Be-Hagh
,
C.
Yan
,
S.
Wu
,
Y.
Pan
,
J. F.
Brodie
, and
A. E.
Maguire
, “
Review and evaluation of wake loss models for wind energy applications
,”
Appl. Energy
226
,
1187
1207
(
2018
).
4.
M.
Bastankhah
and
F.
Porté-Agel
, “
A new analytical model for wind-turbine wakes
,”
Renewable Energy
70
,
116
123
(
2014
).
5.
T.
Ishihara
and
G.-W.
Qian
, “
A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects
,”
J. Wind Eng. Ind. Aerodyn.
177
,
275
292
(
2018
).
6.
F.
Blondel
and
M.
Cathelain
, “
An alternative form of the super-Gaussian wind turbine wake model
,”
Wind Energy Sci. Discuss.
2020
,
1
16
.
7.
A.
Crespo
and
J.
Hernandez
, “
Turbulence characteristics in wind-turbine wakes
,”
J. Wind Eng. Ind. Aerodyn.
61
,
71
85
(
1996
).
8.
L.
Vermeer
,
J. N.
Sørensen
, and
A.
Crespo
, “
Wind turbine wake aerodynamics
,”
Prog. Aerosp. Sci.
39
,
467
510
(
2003
).
9.
L. P.
Chamorro
and
F.
Porté-Agel
, “
A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects
,”
Boundary-Layer Meteorol.
132
,
129
149
(
2009
).
10.
J.
King
,
P.
Fleming
,
R.
King
, and
L. A.
Martínez-Tossas
, “
Controls-oriented model to capture secondary effects of wake steering
,” Wind Energy Sci. (
2019
) (submitted).
11.
R. B.
Cal
,
J.
Lebrón
,
L.
Castillo
,
H. S.
Kang
, and
C.
Meneveau
, “
Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer
,”
J. Renewable Sustainable Energy
2
,
013106
(
2010
).
12.
N.
Hamilton
,
M.
Melius
, and
R. B.
Cal
, “
Wind turbine boundary layer arrays for Cartesian and staggered configurations-part I, flow field and power measurements
,”
Wind Energy
18
,
277
295
(
2015
).
13.
G. V.
Iungo
, “
Experimental characterization of wind turbine wakes: Wind tunnel tests and wind lidar measurements
,”
J. Wind Eng. Ind. Aerodyn.
149
,
35
39
(
2016
).
14.
G. V.
Iungo
,
Y.-T.
Wu
, and
F.
Porté-Agel
, “
Field measurements of wind turbine wakes with lidars
,”
J. Atmos. Oceanic Technol.
30
,
274
287
(
2013
).
15.
T.
Herges
,
D. C.
Maniaci
,
B. T.
Naughton
,
T.
Mikkelsen
, and
M.
Sjöholm
, “
High resolution wind turbine wake measurements with a scanning lidar
,”
J. Phys.: Conf. Ser.
854
,
012021
(
2017
).
16.
S.
Letizia
,
L.
Zhan
,
E.
Nanos
,
C.
Bottasso
,
M. A.
Rotea
, and
G. V.
Iungo
, “
Assessment of wake superposition models through wind tunnel tests and LiDAR measurements
,” in
APS Division of Fluid Dynamics Meeting Abstracts
(
2019
), p.
G42.006
.
17.
I.
Katic
,
J.
Højstrup
, and
N. O.
Jensen
, “
A simple model for cluster efficiency
,” in
European Wind Energy Association Conference and Exhibition
(
A.
Raguzzi
,
1987
), pp.
407
410
.
18.
J. F.
Ainslie
, “
Calculating the flowfield in the wake of wind turbines
,”
J. Wind Eng. Ind. Aerodyn.
27
,
213
224
(
1988
).
19.
S.
Voutsinas
,
K.
Rados
, and
A.
Zervos
, “
On the analysis of wake effects in wind parks
,”
Wind Eng.
14
,
204
219
(
1990
).
20.
P.
Lissaman
, “
Energy effectiveness of arbitrary arrays of wind turbines
,”
J. Energy
3
,
323
328
(
1979
).
21.
N. O.
Jensen
,
A Note on Wind Generator Interaction
(
Risø National Laboratory
,
1983
).
22.
A.
Niayifar
and
F.
Porté-Agel
, “
Analytical modeling of wind farms: A new approach for power prediction
,”
Energies
9
,
741
(
2016
).
23.
K.
Gunn
,
C.
Stock-Williams
,
M.
Burke
,
R.
Willden
,
C.
Vogel
,
W.
Hunter
,
T.
Stallard
,
N.
Robinson
, and
S.
Schmidt
, “
Limitations to the validity of single wake superposition in wind farm yield assessment
,”
J. Phys.: Conf. Ser.
749
,
012003
(
2016
).
24.
M.
Méchali
,
R.
Barthelmie
,
S.
Frandsen
,
L.
Jensen
, and
P.-E.
Réthoré
, “
Wake effects at Horns Rev and their influence on energy production
,” in
European Wind Energy Conference and Exhibition
(
Citeseer
,
2006
), Vol.
1
, pp.
10
20
.
25.
L. P.
Chamorro
,
R.
Arndt
, and
F.
Sotiropoulos
, “
Turbulent flow properties around a staggered wind farm
,”
Boundary-Layer Meteorol.
141
,
349
367
(
2011
).
26.
J.
Meyers
and
C.
Meneveau
, “
Optimal turbine spacing in fully developed wind farm boundary layers
,”
Wind Energy
15
,
305
317
(
2012
).
27.
R. M.
Mudafort
,
P.
Fleming
,
C.
Bay
,
E.
Simley
,
N.
Hamilton
,
P.
Bachant
,
K.
Fleming
,
J.
King
,
A.
Farrel
,
T.
Martínez
,
S.
Sortland
,
K. S.
Seim
, and
D.
Bensason
, NREL/FLORIS: V 2.0.1,
2020
.
28.
P. M.
Gebraad
,
F.
Teeuwisse
,
J.-W.
van Wingerden
,
P. A.
Fleming
,
S. D.
Ruben
,
J. R.
Marden
, and
L. Y.
Pao
, “
A data-driven model for wind plant power optimization by yaw control
,” in
American Control Conference
(
IEEE
,
2014
), pp.
3128
3134
.
29.
P.
Gebraad
,
F.
Teeuwisse
,
J.
Van Wingerden
,
P. A.
Fleming
,
S.
Ruben
,
J.
Marden
, and
L.
Pao
, “
Wind plant power optimization through yaw control using a parametric model for wake effects—A CFD simulation study
,”
Wind Energy
19
,
95
114
(
2016
).
30.
M.
Bastankhah
and
F.
Porté-Agel
, “
Experimental and theoretical study of wind turbine wakes in yawed conditions
,”
J. Fluid Mech.
806
,
506
541
(
2016
).
31.
L. A.
Martínez-Tossas
,
J.
Annoni
,
P. A.
Fleming
, and
M. J.
Churchfield
, “
The aerodynamics of the curled wake: A simplified model in view of flow control
,”
Wind Energy Sci.
4
,
127
138
(
2019
).
32.
IEC
,
IEC 61400-12 Wind Turbines-Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines
, 1st PPUB ed. (
International Electrotechnical Commission
,
Geneva, Switzerland
,
2005
).
33.
N.
Hamilton
, “
Atmospheric condition identification in multivariate data through a metric for total variation
,”
Atmos. Meas. Tech.
13
,
1019
1032
(
2020
).
34.
P.-E.
Réthoré
,
N. A.
Johansen
,
S. T.
Frandsen
,
R.
Barthelmie
,
K.
Hansen
,
L.
Jensen
,
M. A.
Bækgaard
, and
J.
Kristoffersen
, “
Systematic wind farm measurement data reinforcement tool for wake model calibration
,” in
European Offshore Wind Conference
(
2009
), pp.
1
10
.
35.
T.
Duc
,
O.
Coupiac
,
N.
Girard
,
G.
Giebel
, and
T.
Göçmen
, “
Local turbulence parameterization improves the Jensen wake model and its implementation for power optimization of an operating wind farm
,”
Wind Energy Sci.
4
(
2
),
287
302
(
2019
).
36.
M.
Kuhn
and
K.
Johnson
,
Applied Predictive Modeling
(
Springer
,
2013
), Vol.
26
.
37.
N.
Bodini
,
J. K.
Lundquist
, and
A.
Kirincich
, “
U.S. east coast lidar measurements show offshore wind turbines will encounter very low atmospheric turbulence
,”
Geophys. Res. Lett.
46
,
5582
5591
, (
2019
).
You do not currently have access to this content.