A common, worldwide atmospheric phenomenon known as a low-level jet (LLJ) offers benefits to wind energy production. Despite the fact that this effect may be used to increase the capacity factor of wind farms, the interaction between LLJs and wind power plants is not entirely known. By producing a synthetic LLJ velocity profile under well-controlled laboratory conditions, we show that this phenomenon enhances energy entrainment in the wake of wind turbines. The mechanism is associated with the increased velocity shear around the wind farm canopy height, which leads to higher turbulent mixing and, consequently, more energy flux for inner turbines within wind farms. The new insight from this work offers an opportunity to strategically develop, configure, and operate wind farms by taking into account the particular modulation of LLJs.

1.
J.
Chontanawat
,
L. C.
Hunt
, and
R.
Pierse
, “
Does energy consumption cause economic growth?: Evidence from a systematic study of over 100 countries
,”
J. Policy Model.
30
,
209
220
(
2008
).
2.
D. M.
Martinez
and
B. W.
Ebenhack
, “
Understanding the role of energy consumption iqn human development through the use of saturation phenomena
,”
Energy Policy
36
,
1430
1435
(
2008
).
3.
M. Z.
Jacobson
,
C. L.
Archer
, and
W.
Kempton
, “
Taming hurricanes with arrays of offshore wind turbines
,”
Nat. Clim. Change
4
,
195
(
2014
).
4.
D.
Millstein
,
R.
Wiser
,
M.
Bolinger
, and
G.
Barbose
, “
The climate and air-quality benefits of wind and solar power in the United States
,”
Nat. Energy
2
,
17134
(
2017
).
5.
D.
Arent
,
J.
Pless
,
T.
Mai
,
R.
Wiser
,
M.
Hand
,
S.
Baldwin
,
G.
Heath
,
J.
Macknick
,
M.
Bazilian
,
A.
Schlosser
 et al., “
Implications of high renewable electricity penetration in the us for water use, greenhouse gas emissions, land-use, and materials supply
,”
Appl. Energy
123
,
368
377
(
2014
).
6.
L.
Valentino
,
V.
Valenzuela
,
A.
Botterud
,
Z.
Zhou
, and
G.
Conzelmann
, “
System-wide emissions implications of increased wind power penetration
,”
Environ. Sci. Technol.
46
,
4200
4206
(
2012
).
7.
L.
Castillo
,
W.
Gutierrez
, and
J.
Gore
, “
Renewable energy saves water and creates jobs
,”
Sci. Am.
(
2018
). Retrieved from: https://www.scientificamerican.com/article/renewable-energy-saves-water-and-creates-jobs/.
8.
Global Wind Energy Council
,
Global Wind Statistics 2017
(
Global Wind Energy Council
,
2018
).
9.
World Wind Energy Association
, see https://wwindea.org/blog/2019/02/25/wind-power-capacity-worldwide-reaches-600-gw-539-gw-added-in-2018/ for “
Wind Power Capacity Worldwide Reaches 597 GW, 50, 1 GW added in 2018
” (last accessed July 28,
2019
).
10.
R. B.
Cal
,
J.
Lebrón
,
L.
Castillo
,
H. S.
Kang
, and
C.
Meneveau
, “
Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer
,”
J. Renewable Sustainable Energy
2
,
013106
(
2010
).
11.
P.
Veers
,
K.
Dykes
,
E.
Lantz
,
S.
Barth
,
C. L.
Bottasso
,
O.
Carlson
,
A.
Clifton
,
J.
Green
,
P.
Green
,
H.
Holttinen
,
D.
Laird
,
V.
Lehtomäki
,
J. K.
Lundquist
,
J.
Manwell
,
M.
Marquis
,
C.
Meneveau
,
P.
Moriarty
,
X.
Munduate
,
M.
Muskulus
,
J.
Naughton
,
L.
Pao
,
J.
Paquette
,
J.
Peinke
,
A.
Robertson
,
J.
Sanz Rodrigo
,
A. M.
Sempreviva
,
J. C.
Smith
,
A.
Tuohy
, and
R.
Wiser
, “
Grand challenges in the science of wind energy
,”
Science
366
,
eaau2027
(
2019
).
12.
N. D.
Kelley
, “
Turbulence-turbine interaction: The basis for the development of the TurbSim stochastic simulator
,” Technical Report No. NREL/TP-5000-52353 (National Renewable Energy Laboratory (NREL), Golden, CO,
2011
).
13.
S.
Emeis
,
Surface-Based Remote Sensing of the Atmospheric Boundary Layer
, 1st ed. (
Springer Science & Business Media
,
2010
).
14.
J.
Wilczak
,
C.
Finley
,
J.
Freedman
,
J.
Cline
,
L.
Bianco
,
J.
Olson
,
I.
Djalalova
,
L.
Sheridan
,
M.
Ahlstrom
, and
J.
Manobianco
, “
The Wind Forecast Improvement Project (WFIP): A public-private partnership addressing wind energy forecast needs
,”
Bull. Am. Meteorol. Soc.
96
,
1699
1718
(
2015
).
15.
W.
Gutierrez
,
G.
Araya
,
P.
Kiliyanpilakkil
,
A.
Ruiz-Columbie
,
M.
Tutkun
, and
L.
Castillo
, “
Structural impact assessment of low level jets over wind turbines
,”
J. Renewable Sustainable Energy
8
,
023308
(
2016
).
16.
R.
Banta
,
R.
Newsom
,
J.
Lundquist
,
Y.
Pichugina
,
R.
Coulter
, and
L.
Mahrt
, “
Nocturnal low-level jet characteristics over Kansas during CASES-99
,”
Boundary-Layer Meteorol.
105
,
221
252
(
2002
).
17.
E. N.
Smith
,
J. G.
Gebauer
,
P. M.
Klein
,
E.
Fedorovich
, and
J. A.
Gibbs
, “
The Great Plains low-level jet during PECAN: Observed and simulated characteristics
,”
Mon. Weather Rev.
147
,
1845
1869
(
2019
).
18.
B.
Zhou
and
F. K.
Chow
, “
Turbulence modeling for the stable atmospheric boundary layer and implications for wind energy
,”
Flow, Turbul. Combust.
88
,
255
277
(
2012
).
19.
D. J.
Stensrud
, “
Importance of low-level jets to climate: A review
,”
J. Clim.
9
,
1698
1711
(
1996
).
20.
S.
Emeis
,
Wind Energy Meteorology: Atmospheric Physics for Wind Power Generation
(
Springer
,
2018
).
21.
A. K.
Blackadar
, “
Boundary layer wind maxima and their significance for the growth of nocturnal inversions
,”
Bull. Am. Meteorol. Soc.
38
,
283
290
(
1957
).
22.
N.
Kelley
,
M.
Shirazi
,
D.
Jager
,
S.
Wilde
,
J.
Adams
,
M.
Buhl
,
P.
Sullivan
, and
E.
Patton
, “
Lamar low-level jet program interim report
,” Technical Report No. NREL/TP-500-34593 (National Renewable Energy Lab., Golden, CO, USA,
2004
).
23.
West Texas Mesonet
, 200 m Meteorological Tower, Reese Center, Texas Tech University, Lubbock, TX (
2019
).
24.
R. M.
Banta
,
Y. L.
Pichugina
, and
W. A.
Brewer
, “
Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet
,”
J. Atmos. Sci.
63
,
2700
2719
(
2006
).
25.
D. L.
Rife
,
J. O.
Pinto
,
A. J.
Monaghan
,
C. A.
Davis
, and
J. R.
Hannan
, “
Global distribution and characteristics of diurnally varying low-level jets
,”
J. Clim.
23
,
5041
5064
(
2010
).
26.
M. I.
Oliveira
,
E. L.
Nascimento
, and
C.
Kannenberg
, “
A new look at the identification of low-level jets in South America
,”
Mon. Weather Rev.
146
,
2315
2334
(
2018
).
27.
F. S.
Whyte
,
M. A.
Taylor
,
T. S.
Stephenson
, and
J. D.
Campbell
, “
Features of the Caribbean low level jet
,”
Int. J. Climatol.
28
,
119
128
(
2007
).
28.
H.
Kraus
,
J.
Malcher
, and
E.
Schaller
, “
A nocturnal low level jet during PUKK
,”
Boundary-Layer Meteorol.
31
,
187
195
(
1985
).
29.
A.
Lampert
,
B.
Bernalte Jimenez
,
G.
Gross
,
D.
Wulff
, and
T.
Kenull
, “
One-year observations of the wind distribution and low-level jet occurrence at Braunschweig, North German Plain
,”
Wind Energy
19
,
1807
1817
(
2016
).
30.
T.
Ngara
and
G.
Asnani
, “
Five-day oscillation in East African low-level jet
,”
Nature
272
,
708
(
1978
).
31.
J. E.
Hart
, “
On the theory of the East African low level jet stream
,”
Monsoon Dynamics
(
Springer
,
1978
), pp.
1263
1282
.
32.
T.
Ushijima
, “
Analytical study of the low-level jet stream
,”
J. Meteorol. Soc. Jpn. Ser. II
47
,
13
22
(
1969
).
33.
D.
Li
,
H.
von Storch
,
B.
Yin
,
Z.
Xu
,
J.
Qi
,
W.
Wei
, and
D.
Guo
, “
Low-level jets over the Bohai Sea and Yellow Sea: Climatology, variability, and the relationship with regional atmospheric circulations
,”
J. Geophys. Res.
123
,
5240
5260
, (
2018
).
34.
P. T.
May
, “
The Australian nocturnal jet and diurnal variations of boundary-layer winds over Mt. Isa in north-eastern Australia
,”
Q. J. R. Meteorol. Soc.
121
,
987
1003
(
1995
).
35.
A. K.
Laing
and
E.
Brenstrum
, “
Scatterometer observations of low-level wind jets over New Zealand coastal waters
,”
Weather Forecasting
11
,
458
475
(
1996
).
36.
O.
Chiba
and
S.
Kobayashi
, “
A study of the structure of low-level katabatic winds at Mizuho Station, East Antarctica
,”
Boundary-Layer Meteorol.
37
,
343
355
(
1986
).
37.
D. O.
ReVelle
and
E. D.
Nilsson
, “
Summertime low-level jets over the high-latitude Arctic Ocean
,”
J. Appl. Meteorol. Climatol.
47
,
1770
1784
(
2008
).
38.
S.
Emeis
, “
Wind speed and shear associated with low-level jets over Northern Germany
,”
Meteorol. Z.
23
,
295
304
(
2014
).
39.
C.
Jones
, “
Recent changes in the South America low-level jet
,”
npj Clim. Atmos. Sci.
2
,
20
(
2019
).
40.
M.
Abkar
,
A.
Sharifi
, and
F.
Porté-Agel
, “
Wake flow in a wind farm during a diurnal cycle
,”
J. Turbul.
17
,
420
441
(
2016
).
41.
H.
Lu
and
F.
Porté-Agel
, “
Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer
,”
Phys. Fluids
23
,
065101
(
2011
).
42.
W.
Gutierrez
,
A.
Ruiz-Columbie
,
M.
Tutkun
, and
L.
Castillo
, “
The structural response of a wind turbine under operating conditions with a low-level jet
,”
Renewable Sustainable Energy Rev.
108
,
380
391
(
2019
).
43.
X.
Zhang
,
C.
Yang
, and
S.
Li
, “
Influence of the heights of low-level jets on power and aerodynamic loads of a horizontal axis wind turbine rotor
,”
Atmosphere
10
,
132
(
2019
).
44.
A. C.
Fitch
,
J. K.
Lundquist
, and
J. B.
Olson
, “
Mesoscale influences of wind farms throughout a diurnal cycle
,”
Mon. Weather Rev.
141
,
2173
2198
(
2013
).
45.
M. J.
Churchfield
and
S.
Sirnivas
, “
On the effects of wind turbine wake skew caused by wind veer
,” in
2018 Wind Energy Symposium
(
2018
), p.
0755
.
46.
J. S.
Na
,
E.
Koo
,
E. K.
Jin
,
R.
Linn
,
S. C.
Ko
,
D.
Muñoz-Esparza
, and
J. S.
Lee
, “
Large-eddy simulations of wind-farm wake characteristics associated with a low-level jet
,”
Wind Energy
21
,
163
173
(
2018
).
47.
D.
Allaerts
and
J.
Meyers
, “
Gravity waves and wind-farm efficiency in neutral and stable conditions
,”
Boundary-Layer Meteorol.
166
,
269
299
(
2018
).
48.
R. B.
Smith
, “
Gravity wave effects on wind farm efficiency
,”
Wind Energy
13
,
449
458
(
2009
).
49.
Y.
Ohya
,
R.
Nakamura
, and
T.
Uchida
, “
Intermittent bursting of turbulence in a stable boundary layer with low-level jet
,”
Boundary-Layer Meteorol.
126
,
349
363
(
2008
).
50.
J.
Lundquist
,
K.
DuVivier
,
D.
Kaffine
, and
J.
Tomaszewski
, “
Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development
,”
Nat. Energy
4
,
26
(
2019
).
51.
R. J.
Adrian
,
C. D.
Meinhart
, and
C. D.
Tomkins
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid Mech.
422
,
1
54
(
2000
).
52.
H.
Shiu
,
E.
Johnson
,
M.
Barone
,
R.
Phillips
,
W.
Straka
,
A.
Fontaine
,
M.
Jonson
 et al., “
A design of a hydrofoil family for current-driven marine-hydrokinetic turbines
,” in
2012 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference
(
American Society of Mechanical Engineers
,
2012
), pp.
839
847
.
53.
N.
Tobin
,
H.
Zhu
, and
L. P.
Chamorro
, “
Spectral behaviour of the turbulence-driven power fluctuations of wind turbines
,”
J. Turbul.
16
,
832
846
(
2015
).
54.
A.
Lloyd
, “
The generation of shear flow in a wind tunnel
,”
Q. J. R. Meteorol. Soc.
93
,
79
96
(
1967
).
55.
L.
Chamorro
,
R.
Arndt
, and
F.
Sotiropoulos
, “
Reynolds number dependence of turbulence statistics in the wake of wind turbines
,”
Wind Energy
15
,
733
742
(
2012
).
56.
H.
Liu
,
I.
Hayat
,
Y.
Jin
, and
L.
Chamorro
, “
On the evolution of the integral time scale within wind farms
,”
Energies
11
,
93
(
2018
).
57.
C. J.
Greenshields
,
OpenFOAM User Guide
, version 3 (
OpenFOAM Foundation Ltd.
,
2015
), p.
47
.
58.
L. A.
Martínez-Tossas
,
M. J.
Churchfield
, and
C.
Meneveau
, “
Large eddy simulation of wind turbine wakes: Detailed comparisons of two codes focusing on effects of numerics and subgrid modeling
,”
J. Phys.
625
,
012024
(
2015
).
59.
R.
Poletto
,
T.
Craft
, and
A.
Revell
, “
A new divergence free synthetic eddy method for the reproduction of inlet flow conditions for LES
,”
Flow, Turbul. Combust.
91
,
519
539
(
2013
).
60.
P.
Luzzatto-Fegiz
and
C.-C.
Caulfield
, “
Entrainment model for fully-developed wind farms: Effects of atmospheric stability and an ideal limit for wind farm performance
,”
Phys. Rev. Fluids
3
,
093802
(
2018
).
61.
J.
Park
and
K. H.
Law
, “
Cooperative wind turbine control for maximizing wind farm power using sequential convex programming
,”
Energy Convers. Manage.
101
,
295
316
(
2015
).
You do not currently have access to this content.